Advertisements
Advertisements
Question
In a malaria epidemic, the number of cases diagnosed were as follows:
Date July | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Num | 5 | 12 | 20 | 27 | 46 | 30 | 31 | 18 | 11 | 5 | 0 | 1 |
On what days do the mode and upper and lower quartiles occur?
Solution
Date | Number | C.f. |
1 | 5 | 5 |
2 | 12 | 17 |
3 | 20 | 37 |
4 | 27 | 64 |
5 | 46 | 110 |
6 | 30 | 140 |
7 | 31 | 171 |
8 | 18 | 189 |
9 | 11 | 200 |
10 | 5 | 205 |
11 | 0 | 205 |
12 | 1 | 206 |
(i) Mode = 5th July as it has maximum frequencies.
(ii) Total number of terms = 206
Upper quartile = `206 xx 3/4`
= 154.5th term
= 7th July
Lower quartile = `206 xx 1/4`
= 51.5th term
= 4th July
APPEARS IN
RELATED QUESTIONS
The following table gives the age of 50 student of a class. Find the arithmetic mean of their ages.
Age-years | 16 – 18 | 18 – 20 | 20 – 22 | 22 – 24 | 24 – 26 |
No. of students | 2 | 7 | 21 | 17 | 3 |
Using step-deviation method, calculate the mean marks of the following distribution.
C.I. | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 | 75 – 80 | 80 – 85 | 85 – 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
Find the mode of the following:
6, 7, 1, 8,6,5, 9, 4, 6, 7, 1,3, 2, 6, 7,8
The marks of 200 students in a test is given below :
Marks% | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 | 60-69 | 70-79 | 80-89 |
No. of Students | 7 | 11 | 20 | 46 | 57 | 37 | 15 | 7 |
Draw an ogive and find
(i) the median
(ii) the number of students who scored more than 35% marks
If different values of variable x are 19.8, 15.4, 13.7, 11.71, 11.8, 12.6, 12.8, 18.6, 20.5 and 2.1, find the mean.
Find the median of 3.6, 9.4, 3.8, 5.6, 6.5, 8.9, 2.7, 10.8, 15.6, 1.9 and 7.6.
Find the mean of 35, 44, 31, 57, 38, 29, 26,36, 41 and 43.
Find the median of 21, 21, 22, 23, 23, 24, 24, 24, 24, 25 and 25
Median is one of the observations in the data if number of observations is ______.
An incomplete frequency distribution is given below
Variate | Frequency |
10 – 20 | 12 |
20 – 30 | 30 |
30 – 40 | ? |
40 – 50 | 65 |
50 – 60 | 45 |
60 – 70 | 25 |
70 – 80 | 18 |
Total | 229 |
Median value is 46, the missing frequency is: