English

In a quadrilateral ABCD, AB = AD and CB = CD. Prove that: i. AC bisects angle BAD. ii. AC is the perpendicular bisector of BD. - Mathematics

Advertisements
Advertisements

Question

In a quadrilateral ABCD, AB = AD and CB = CD.

Prove that:

  1. AC bisects angle BAD.
  2. AC is the perpendicular bisector of BD.
Sum

Solution

Given: ABCD is quadrilateral,

AB = AD

CB = CD

To prove:

  1. AC bisects angle BAD.
  2. AC is the perpendicular bisector of BD.


Proof:

In ΔABC and ΔADC,

AB = AD                    ...(given)

CB = CD                    ...(given)

AC = AC                    ...(Common side)

ΔABC ≅ ΔADC          ...(SSS)

∠BAD = ∠DAO         ...(AC bisects A)

Therefore, AC bisects ∠BAD

OD = OB

OA = OC                 ...(diagonals bisect each other at O)

Thus, AC is perpendicular bisector of BD.

Hence, proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium] - Exercise 14 (C) [Page 182]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 14 Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium]
Exercise 14 (C) | Q 13 | Page 182
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×