English

In Parallelogram Abcd, P is a Point on Side Ab and Q is a Point on Side Bc. Prove That: δCpd and δAqd Are Equal in Area. Area (δAqd) = Area (δApd) + Area (δCpb - Mathematics

Advertisements
Advertisements

Question

In parallelogram ABCD, P is a point on side AB and Q is a point on side BC.
Prove that:
(i) ΔCPD and ΔAQD are equal in the area.
(ii) Area (ΔAQD) = Area (ΔAPD) + Area (ΔCPB)

Sum

Solution

Given ABCD is a parallelogram. P and Q are any points on the sides AB and BC respectively, join diagonals AC and BD.

proof:
(i) since triangles with the same base and between the same set of parallel lines have equal areas

area ( CPD ) =  area( BCD )                           …… (1)

again, diagonals of the parallelogram bisect area in two equal parts
area ( BCD ) = ( 1/2 ) area of parallelogram ABCD   …… (2)

from (1) and (2)
area( CPD ) = 1/2 area( ABCD )                           …… (3)
similarly area ( AQD ) = area( ABD ) = 1/2 area( ABCD )…… (4)
from (3) and (4)
area( CPD ) = area( AQD ),
hence proved.

(ii) We know that area of triangles on the same base and between same parallel lines are equal

So Area of AQD= Area of ACD= Area of PDC = Area of BDC = Area of ABC=Area of APD + Area of BPC
Hence Proved

shaalaa.com
Figures Between the Same Parallels
  Is there an error in this question or solution?
Chapter 16: Area Theorems [Proof and Use] - Exercise 16 (A) [Page 196]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 16 Area Theorems [Proof and Use]
Exercise 16 (A) | Q 4 | Page 196

RELATED QUESTIONS

In the given figure, if the area of triangle ADE is 60 cm2, state, given reason, the area of :
(i) Parallelogram ABED;
(ii) Rectangle ABCF;
(iii) Triangle ABE.


In the given figure, AD // BE // CF.
Prove that area (ΔAEC) = area (ΔDBF)


ABCD is a trapezium with AB // DC. A line parallel to AC intersects AB at point M and BC at point N.
Prove that: area of Δ ADM = area of Δ ACN.


In the following, AC // PS // QR and PQ // DB // SR.

Prove that: Area of quadrilateral PQRS = 2 x Area of the quad. ABCD.


In the given figure, M and N are the mid-points of the sides DC and AB respectively of the parallelogram ABCD.

If the area of parallelogram ABCD is 48 cm2;
(i) State the area of the triangle BEC.
(ii) Name the parallelogram which is equal in area to the triangle BEC.


In the given figure, AP is parallel to BC, BP is parallel to CQ.
Prove that the area of triangles ABC and BQP are equal.


In the following figure, BD is parallel to CA, E is mid-point of CA and BD = `1/2`CA
Prove that: ar. ( ΔABC ) = 2 x ar.( ΔDBC )


In parallelogram ABCD, E is a point in AB and DE meets diagonal AC at point F. If DF: FE = 5:3 and area of  ΔADF is 60 cm2; find
(i) area of ΔADE.
(ii) if AE: EB = 4:5, find the area of  ΔADB.
(iii) also, find the area of parallelogram ABCD.


In parallelogram ABCD, P is the mid-point of AB. CP and BD intersect each other at point O. If the area of ΔPOB = 40 cm2, and OP: OC = 1:2, find:
(i) Areas of ΔBOC and ΔPBC
(ii) Areas of ΔABC and parallelogram ABCD.


Show that:
The ratio of the areas of two triangles on the same base is equal to the ratio of their heights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×