English

In the Given Figure, M and N Are the Mid-points of the Sides Dc and Ab Respectively of the Parallelogram Abcd F the Area of Parallelogram Abcd is 48 Cm2; State the Area of the Triangle Bec. - Mathematics

Advertisements
Advertisements

Question

In the given figure, M and N are the mid-points of the sides DC and AB respectively of the parallelogram ABCD.

If the area of parallelogram ABCD is 48 cm2;
(i) State the area of the triangle BEC.
(ii) Name the parallelogram which is equal in area to the triangle BEC.

Sum

Solution

(i) Since triangle BEC and parallelogram ABCD are on the same base BC and between the same parallels i.e. BC // AD.

So Area ( ΔBEC )= `1/2 xx "Area" ( square`ABCD )

= `1/2` x 48 = 24 cm2  

(ii) Area (` square "ANMD" ) = "Area" ( square` BNMC )
= `1/2"Area" ( square` ABCD)

= `1/2` x 2 x Area ( ΔBEC )

= Area ( ΔBEC )

Therefore, Parallelograms ANMD and NBCM have areas equal to triangle BEC.

shaalaa.com
Figures Between the Same Parallels
  Is there an error in this question or solution?
Chapter 16: Area Theorems [Proof and Use] - Exercise 16 (A) [Page 196]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 16 Area Theorems [Proof and Use]
Exercise 16 (A) | Q 5 | Page 196

RELATED QUESTIONS

In the given figure, if the area of triangle ADE is 60 cm2, state, given reason, the area of :
(i) Parallelogram ABED;
(ii) Rectangle ABCF;
(iii) Triangle ABE.


In the given figure, AD // BE // CF.
Prove that area (ΔAEC) = area (ΔDBF)


In the following figure, DE is parallel to BC.
Show that: 
(i) Area ( ΔADC ) = Area( ΔAEB ).
(ii) Area ( ΔBOD ) = Area( ΔCOE ).


ABCD is a parallelogram in which BC is produced to E such that CE = BC and AE intersects CD at F.

If ar.(∆DFB) = 30 cm2; find the area of parallelogram.


ABCD is a trapezium with AB parallel to DC. A line parallel to AC intersects AB at X and BC at Y.
Prove that the area of ∆ADX = area of ∆ACY.


In the given figure, the diagonals AC and BD intersect at point O. If OB = OD and AB//DC,
show that:
(i) Area (Δ DOC) = Area (Δ AOB).
(ii) Area (Δ DCB) = Area (Δ ACB).
(iii) ABCD is a parallelogram.


The given figure shows a parallelogram ABCD with area 324 sq. cm. P is a point in AB such that AP: PB = 1:2
Find The area of Δ APD.


In parallelogram ABCD, E is a point in AB and DE meets diagonal AC at point F. If DF: FE = 5:3 and area of  ΔADF is 60 cm2; find
(i) area of ΔADE.
(ii) if AE: EB = 4:5, find the area of  ΔADB.
(iii) also, find the area of parallelogram ABCD.


In parallelogram ABCD, P is the mid-point of AB. CP and BD intersect each other at point O. If the area of ΔPOB = 40 cm2, and OP: OC = 1:2, find:
(i) Areas of ΔBOC and ΔPBC
(ii) Areas of ΔABC and parallelogram ABCD.


Show that:
The ratio of the areas of two triangles on the same base is equal to the ratio of their heights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×