English

In parallelogram LOST, SN ⊥ OL and SM ⊥ LT. Find ∠STM, ∠SON and ∠NSM. - Mathematics

Advertisements
Advertisements

Question

In parallelogram LOST, SN ⊥ OL and SM ⊥ LT. Find ∠STM, ∠SON and ∠NSM.

Sum

Solution

Given, ∠MST = 40°

In ΔMST,

By the angle sum property of a triangle,

∠TMS + ∠MST + ∠STM = 180°

⇒ ∠STM = 180° – (90° + 40°)   ...[∵ SM ⊥ LT, ∠TMS = 90°]

= 50°

∴ ∠SON = ∠STM = 50°  ...[∵ Opposite angles of a parallelogram are equal]

Now, In the ΔONS,

∠ONS + ∠OSN + ∠SON = 180°  ...[Angle sum property of triangle]

∠OSN = 180° – (90° + 50°)

= 180° – 140°

= 40°

Moreover, ∠SON + ∠TSO = 180°   ...[∵ Adjacent angles of a parallelogram are supplementary]

⇒ ∠SON + ∠TSM + ∠NSM + ∠OSN = 180°

⇒ 50° + 40° + ∠NSM + 40° = 180°

⇒ 90° + 40° + ∠NSM = 180°

⇒ 130° + ∠NSM = 180°

⇒ ∠NSM = 180° – 130° = 50°

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Understanding Quadrilaterals and Practical Geometry - Exercise [Page 158]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 8
Chapter 5 Understanding Quadrilaterals and Practical Geometry
Exercise | Q 153 | Page 158

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×