English

In a Quadrilateral Abcd, Co and Do Are the Bisectors of `∠`C and ∠D Respectively. Prove that `∠`Cod = `1/2` (`∠`A+ `∠`B). - Mathematics

Advertisements
Advertisements

Question

In a quadrilateral ABCD, CO and DO are the bisectors of `∠`C and ∠D respectively. Prove that

`∠`COD = `1/2` (`∠`A+ `∠`B).

 

Solution

In ΔDOC

`∠`1+ `∠`COD + `∠`2 =180°                 [Angle sum property of a triangle]

⇒ `∠`COD = 180 - `∠`1- `∠`2

⇒ `∠`COD =180 - `∠`1+ `∠`2

⇒ `∠`COD = 180- `[1/2∠c+1/2∠d]`

[  ∵  OC and OD are bisectors of `∠`C and `∠`D represents ]

⇒ `∠`COD = 180-`1/2` (`∠`C and `∠`D)]       ............1

In quadrilateral  ABCD

`∠`A + `∠`B + `∠`C + `∠`D = 360°

`∠`C + `∠`D = 360 - `∠`A + `∠`B       ..............(2) [ Angle sum property of quadrilateral]

Substituting (ii) in (i)

⇒ `∠`COD = 180 -`1/2`(360 - `∠`A + `∠`B ))

⇒ `∠`COD = 180 -180 +`1/2`(`∠`A +`∠`B )

⇒ `∠`COD =`1/2`(`∠`A +`∠`B )

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Quadrilaterals - Exercise 13.1 [Page 4]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 13 Quadrilaterals
Exercise 13.1 | Q 4 | Page 4

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×