Advertisements
Advertisements
Question
In the adjacent figure, ABC is a right angled triangle with right angle at B and points D, E trisect BC. Prove that 8AE2 = 3AC2 + 5AD2
Solution
Since Points D, E trisect BC.
BD = DE = CE
Let BD = DE = CE = x
BE = 2x and BC = 3x
In the right ∆ABD,
AD2 = AB2 + BD2
AD2 = AB2 + x2 ...(1)
In the right ∆ABE,
AE2 = AB2 + 2BE2
AE2 = AB2 + 4x2 ...(2) ...(BE = 2x)
In the right ∆ABC
AC2 = AB2 + BC2
AC2 = AB2 + 9x2 ...(3) ...(BC = 3x)
R.H.S. = 3AC2 + 5AD2
= 3[AB2 + 9x2] + 5[AB2 + x2] ...[From (1) and (3)]
= 3AB2 + 27x2 + 5AB2 + 5x2
= 8AB2 + 32x2
= 8(AB2 + 4x2)
= 8AE2 ...[From (2)]
= R.H.S.
∴ 8AE2 = 3AC2 + 5AD2
APPEARS IN
RELATED QUESTIONS
In ∆PQR, PQ = √8 , QR = √5 , PR = √3. Is ∆PQR a right-angled triangle? If yes, which angle is of 90°?
In the rectangle WXYZ, XY + YZ = 17 cm, and XZ + YW = 26 cm. Calculate the length and breadth of the rectangle?
5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.
8, 15, 17 is a Pythagorean triplet
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
8, 15, 17
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
12, 13, 15
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
30, 40, 50
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
24, 45, 51
Choose the correct alternative:
A rectangle having length of a side is 12 and length of diagonal is 20, then what is length of other side?
A rectangle having dimensions 35 m × 12 m, then what is the length of its diagonal?