Advertisements
Advertisements
Question
In the figure, chords AE and BC intersect each other at point D. If ∠CDE = 90°, AB = 5 cm, BD = 4 cm and CD = 9 cm; find DE.
Solution
Join AB.
In right ΔADB,
AB2 = AD2 + DB2
52 = AD2 + 42
AD2 = 25 – 16
AD2 = 9
AD = 3
Chords AE and CB intersect each other at D inside the circle
AD × DE = BD × DC
3 × DE = 4 × 9
DE = 12 cm
APPEARS IN
RELATED QUESTIONS
In the following figure, AD is a straight line. OP ⊥ AD and O is the centre of both the circles. If OA = 34 cm. OB = 20 cm and OP = 16cm; find the length of AB.
In the figure, AB is common chord of the two circles. If AC and AD are diameters; prove that D, B and C are in a straight line. O1 and O2 are the centers of two circles.
The diameter and a chord of a circle have a common end-point. If the length of the diameter is 20 cm and the length of the chord is 12 cm, how far is the chord from the centre of the circle?
In the figure, AB is the chord of a circle with centre O and DOC is a line segment such that BC = DO. If ∠C = 20°, find angle AOD.
In the given figure, QAP is the tangent at point A and PBD is a straight line.
If ∠ACB = 36° and ∠APB = 42°, find:
- ∠BAP
- ∠ABD
- ∠QAD
- ∠BCD
In the given figure, AB is the diameter. The tangent at C meets AB produced at Q.
If ∠CAB = 34°, Find : ∠CBA
Prove that the line segment joining the midpoints of two parallel chords of a circle passes through its centre.
Two circles are drawn with sides AB, AC of a triangle ABC as diameters. They intersect at a point D. Prove that D lies on BC.
In following figure . O is the centre of the circle. Find ∠ BAC.
In following figure , chord ED is parallel to the diameter AC of the circle. Given ∠ CBE = 65° , calculate ∠DEC .