English

Instrument which can measure terminal potential difference as well as electromotive force (emf) is ______ - Physics

Advertisements
Advertisements

Question

The instrument which can measure terminal potential difference as well as electromotive force (emf) is ______ 

Options

  • Wheatstone’s meter bridge

  • voltmeter

  • potentiometer

  • galvanometer

MCQ
Fill in the Blanks

Solution

The instrument which can measure terminal potential difference, as well as electromotive force (emf), is the potentiometer.

shaalaa.com
Potentiometer
  Is there an error in this question or solution?
Chapter 9: Current Electricity - MCQ’S

APPEARS IN

SCERT Maharashtra Physics [English] 12 Standard HSC
Chapter 9 Current Electricity
MCQ’S | Q 4

RELATED QUESTIONS

Accuracy of potentiometer can be easily increased by ______.


Write two factors by which current sensitivity of a potentiometer can be increased.


Figure shows a 2.0 V potentiometer used for the determination of internal resistance of a 1.5 V cell. The balance point of the cell in open circuit is 76.3 cm. When a resistor of 9.5 Ω is used in the external circuit of the cell, the balance point shifts to 64.8 cm length of the potentiometer wire. Determine the internal resistance of the cell.


In the given circuit, with steady current, calculate the potential drop across the capacitor and the charge stored in it.


In the given circuit in the steady state, obtain the expressions for (a) the potential drop (b) the charge and (c) the energy stored in the capacitor, C.


A potentiometer wire of length 1 m has a resistance of 5 Ω. It is connected to a 8 V battery in series with a resistance of 15 Ω. Determine the emf of the primary cell which gives a balance point at 60 cm.


In the figure a long uniform potentiometer wire AB is having a constant potential gradient along its length. The null points for the two primary cells of emfs ε1 and ε2 connected in the manner shown are obtained at a distance of 120 cm and 300 cm from the end A. Find (i) ε1/ ε2 and (ii) position of null point for the cell ε1.

How is the sensitivity of a potentiometer increased?


The net resistance of an ammeter should be small to ensure that _______________ .


The potentiometer wire AB shown in the figure is 50 cm long. When AD = 30 cm, no deflection occurs in the galvanometer. Find R.


In a potentiometer experiment, the balancing length with a resistance of 2Ω is found to be 100 cm, while that of an unknown resistance is 500 cm. Calculate the value of the unknown resistance. 


Draw a labelled circuit diagram of a potentiometer to measure the internal resistance ‘r’ of a cell. Write the working formula (derivation is not required). 


A student uses the circuit diagram of a potentiometer as shown in the figure
(a) for a steady current I passing through the potentiometer wire, he gets a null point for the cell ε1. and not for ε2. Give the reason for this observation and suggest how this difficulty can be resolved.

(b) What is the function of resistance R used in the circuit? How will the change in its value affect the null point?

(c) How can the sensitivity of the potentiometer be increased?


When the balance point is obtained in the potentiometer, a current is drawn from ______.


Define or describe a Potentiometer.


Define potential gradient of the potentiometer wire.


How is potential gradient measured? Explain.


What are the disadvantages of a potentiometer?


Why is a potentiometer preferred over a voltmeter for measuring emf?


The resistance of a potentiometer wire is 8 Ω and its length is 8 m. A resistance box and a 2 V battery are connected in series with iL What should be the resistance in the box if it is desired to have a potential drop of 1 µV/mm?


When two cells of emf's E1 and E2 are connected in series so as to assist each other, their balancing length on a potentiometer wire is found to be 2.7 m. When the cells are connected in series so as to oppose each other, the balancing length is found to be 0.3 m. Compare the emf's of the two cells.


The SI unit of the potential gradient is ______  


When the null point is obtained in the potentiometer, the current is drawn from the ______  


If the potential gradient of a wire decreases, then its length ______  


State any one use of a potentiometer.


A voltmeter has a resistance of 100 Ω. What will be its reading when it is connected across a cell of emf 6 V and internal resistance 20 Ω? 


What are the disadvantages of a potentiometer over a voltmeter?


A cell of e.m.f 1.5V and negligible internal resistance is connected in series with a potential meter of length 10 m and the total resistance of 20 Ω. What resistance should be introduced in the resistance box such that the potential drop across the potentiometer is one microvolt per cm of the wire?  


Which of the following instruments is not a direct reading instrument?


The potentiometer is more sensitive, when ______.


The resistivity of potentiometer wire is 40 × 10-8 ohm - metre and its area of cross-section is 8 × 10-6 m2. If 0.2 ampere current is flowing through the wire, the potential gradient of the wire is ______.


If the e.m.f of a cell is not constant in the metre bridge experiment, then the ____________.


In the given figure, battery E is balanced on 55 cm length of potentiometer wire but when a resistance of 10 `Omega` is connected in parallel with the battery, then it balances on 50 cm length of the potentiometer wire. The internal resistance r of the battery is ____________.


A wire has a length of 2m and a resistance of 10Ω. It is connected in series with a resistance of 990Ω and a cell of e.m.f. 2V. The potential gradient along the wire will be ______


In the experiment to determine the internal resistance of a cell (E1) using a potentiometer, the resistance drawn from the resistance box is 'R'. The potential difference across the balancing length of the wire is equal to the terminal potential difference (V) of the cell. The value of internal resistance (r) of the cell is ______


Two students X and Y perform potentiometer experiment separately and null point was obtained as shown in diagram. During the experiment, ______.

  1. X increases the value of R (resistance)
  2. Y decreases the value of S (resistance)

The position of null point obtained by students X and Y respectively.


In a potentiometer of 10 wires, the balance point is obtained on the 7th wire. To shift the balance point to 9th wire, we should ______.


AB is a wire of potentiometer with the increase in value of resistance R, the shift in the balance point J will be:


The value of current I in the network shown in fig.


A wire of resistance R is cut into two equal part. There parts are then connected in parallel. The equivalent resistance of the combination will be


Specific resistance of a conductor increase with.


In a potentiometer circuit, a cell of EMF 1.5 V gives balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, the balance point occurs?


In a potentiometer circuit a cell of EMF 1.5 V gives balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, the balance point occurs? 


In an experiment with a potentiometer, VB = 10V. R is adjusted to be 50Ω (Figure). A student wanting to measure voltage E1 of a battery (approx. 8V) finds no null point possible. He then diminishes R to 10Ω and is able to locate the null point on the last (4th) segment of the potentiometer. Find the resistance of the potentiometer wire and potential drop per unit length across the wire in the second case.


Potential difference between the points A and B in the circuit shown is 16 V, then potential difference across 2Ω resistor is ______ V. volt. (VA > VB)


A Daniel cell is balanced on 125 cm lengths of a potentiometer wire. Now the cell is short circuited by a resistance 2 Ω and the balance is obtained at 100 cm. The internal resistance of the Daniel cell is ______.


If you are provided a set of resistances 2Ω, 4Ω, 6Ω and 8Ω. Connect these resistances so as to obtain an equivalent resistance of `46/3`Ω.


A cell of internal resistance r is connected across an external resistance nr. Then the ratio of the terminal voltage to the emf of the cell is ______.


In potentiometer experiment, null point is obtained at a particular point for a cell on potentiometer wire x cm long. If the length of the potentiometer wire is increased without changing the cell, the balancing length will ______. (Driving source is not changed) 


A potentiometer wire AB having length L and resistance 12r is joined to a cell D of emf ε and internal resistance r. A cell C having emt `ε/2` and internal resistance 3r is connected. The length AJ at which the galvanometer as shown in the figure shows no deflection is ______.

 


Draw neat labelled diagram of potentiometer as voltage divider.


In a potentiometer, a cell is balanced against 110 cm when the circuit is open. A cell is balanced at 100 cm when short-circuited through a resistance of 10 Ω. Find the internal resistance of the cell.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×