Advertisements
Advertisements
Question
किसी AP का 8 वाँ पद उसके दूसरे पद का आधा है तथा 11 वाँ पद उसके चौथे पद के एक तिहाई से 1 अधिक है। 15 वाँ पद ज्ञात कीजिए।
Solution
मान लीजिए a और d क्रमशः AP का पहला पद और सार्व अंतर हैं।
अब, दी गई शर्त से,
a8 = `1/2 a_2`
⇒ a + 7d = `1/2(a + d)` ...[∵ an = a + (n – 1)d]
⇒ 2a + 14d = a + d
⇒ a + 13d = 0 ...(i)
और a11 = `1/3 a_4 + 1` ...[दिया गया है]
⇒ a + 10d = `1/3[a + 3d] + 1`
⇒ 3a + 30d = a + 3d + 3
⇒ 2a + 27d = 3
समीकरण (i) और (ii) से,
2(–13d) + 27d = 3
⇒ –26d + 27d = 3
⇒ d = 3
समीकरण (i) से,
a + 13(3) = 0
⇒ a = – 39
∴ a15 = a + 14d
= – 39 + 14(3)
= – 39 + 42
= 3
APPEARS IN
RELATED QUESTIONS
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
12, 52, 72, 73,...
किसी A.P. का प्रथम पद 5, अंतिम पद 45 और योग 400 है। पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
0, 2, 0, 2,...
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
किसी स्कूल द्वारा कक्षा I से XII तक से प्रत्येक मास में लिया गया शुल्क, जबकि कक्षा I का मासिक शुल्क 250 रु है तथा यह प्रत्येक अगली कक्षा के लिए 50 रु बढ़ता जाता है।
स्तंभ A में दी हुई प्रत्येक AP को स्तंभ B में दिए उपयुक्त सार्व अंतर से सुमेलित कीजिए:
स्तंभ A | स्तंभ B |
(A1) 2, –2, –6, –10,... | (B1) `2/3` |
(A2) a = –18, n = 10, an = 0 | (B2) –5 |
(A3) a = 0, a10 = 6 | (B3) 4 |
(A4) a2 = 13, a4 = 3 | (B4) –4 |
(B5) 2 | |
(B6) `1/2` | |
(B7) 5 |
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
`5, 14/3, 13/3, 4,...`
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
`sqrt(3), 2sqrt(3), 3sqrt(3),...`
k का मान ज्ञात कीजिए ताकि k2 + 4k + 8, 2k2 + 3k + 6, 3k2 + 4k + 4 किसी AP के तीन क्रमागत पद हों।
किसी त्रिभुज के कोण एक AP में हैं। सबसे बड़ा कोण सबसे छोटे कोण का दुगुना है। त्रिभुज के सभी कोण ज्ञात कीजिए।