English

Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X. - Mathematics and Statistics

Advertisements
Advertisements

Question

Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the standard deviation of X.

Sum

Solution 1

If two fair dice are rolled then the sample space S of this experiment is

S = {(1,1), (1,2),(1,3),(1,4),(1,5),(1,5),(1,6),(2,1),(2,2),(2,3),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}

∴ n(S) = 36

Let X denote the sum of the numbers on uppermost faces.

Then X can take the values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

sum of Nos. (x) Favourable events  No of favourable  P (x)
2 (1,1) 1 `1/36`
3 (1, 2), (2, 1) 2 `2/36`
4 (1, 3), (2, 2), (3, 1) 3 `3/36`
5 (1, 4), (2, 3), (3, 2), (4, 1) 4 `4/36`
6 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) 5 `5/36`
7 (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) 6 `6/36`
8 (2, 6), (3, 5), (4, 4), (5, 3), (6, 2) 5 `5/36`
9 (3, 6), (4, 5), (5, 4), (6, 3) 4 `4/36`
10 (4, 6), (5, 5), (6, 4) 3 `3/36`
11 (5, 6), (6, 5) 2 `2/36`
12 (6,6) 1 `1/36`

∴ the probability distribution of X is given by

X=xi 2 3 4 5 6 7 8 9 10 11 12
P[X=xi] `1/36` `2/36` `3/36` `4/36` `5/36` `6/36` `5/36` `4/36` `3/36` `2/36` `1/36`

Expected value = E (X) = Σxi · P (xi)

= `2(1/36)+3(2/36)+4(3/36)+5(4/36)+6(5/36)+7(6/36)+8(5/36)+9(4/36)+10(3/36)+11(2/36)+12(1/36)`

=`1/36 (2+6+12+20+30+42+40+36+30+22+12)`

`1/ 36 xx 252 = 7.`

Also, Σxi2 · P (xi)

= `4xx1/36 + 9xx2/36 + 16xx3/36 + 25xx4/36 + 36xx5/36 + 49xx6/36 + 64xx5/36 + 81xx4/36 + 100xx3/36 + 121xx2/36 + 144xx1/36`

= `1/36[4 + 18 + 48 + 100 + 180 + 294 + 320 + 324 + 300 + 242 + 144]`

=  `1/ 36` (1974) = 54.83

∴ variance = V(X) = Σxi2 · P (xi) - [E(X)]2

= 54·83 - 49

= 5.83

∴ standard deviation = `sqrt(V(X))`

= `sqrt(5.83)=2.41`

shaalaa.com

Solution 2

The sample space of the experiment consists of 36 elementary events in the form of ordered pairs (xi, yi), where xi = 1, 2, 3, 4, 5, 6 and yi = 1, 2, 3, 4, 5, 6.

The random variable X, i.e., the sum of the numbers on the two dice takes the values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

X = xi p(xi) xiP(xi) xi2P(xi)
2 `1/36` `2/36` `4/36`
3 `2/36` `6/36` `18/36`
4 `3/36` `12/36` `48/36`
5 `4/36` `20/36` `100/36`
6 `5/36` `30/36` `180/36`
7 `6/36` `42/36` `294/36`
8 `7/36` `40/36` `320/36`
9 `8/36` `36/36` `324/36`
10 `9/36` `30/36` `300/36`
11 `10/36` `22/36` `242/36`
12 `11/36` `12/36` `144/36`
    `sum_("i" = 1)^"n"x_"i""P"(x_"i")` = 7 `sum_("i" = 1)^"n"x_"i"^2"P"(x_"i") = 1974/36`

∴ E(X) = `sum_("i" = 1)^11x_"i""P"(x_"i")` = 7

E(X2) =`sum_("i" = 1)^"n"x_"i"^2"P"(x_"i") = 1974/36`

Var(X) = E(X2) − [E(X)]2

= `1974/36- (7)^2`

= `1974/36 - 49`

= `35/6`

∴ Standard deviation = `sqrt("Var"("X"))`

= `sqrt(35/6)`

= 2.415

shaalaa.com
Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Chapter 7: Probability Distributions - Exercise 7.1 [Page 233]

APPEARS IN

RELATED QUESTIONS

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2
P(X) 0.4 0.4 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 − 0.1 0.2

State if the following is not the probability mass function of a random variable. Give reasons for your answer.

Y −1 0 1
P(Y) 0.6 0.1 0.2

The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find P (x < 1·5)


The following is the p.d.f. of r.v. X :

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise

P ( 1 < x < 2 )


The following is the p.d.f. of r.v. X:

f(x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

 P(x > 2)


Find k if the following function represent p.d.f. of r.v. X

f (x) = kx, for 0 < x < 2 and = 0 otherwise, Also find P `(1/ 4 < x < 3 /2)`.


Find k, if the following function represents p.d.f. of r.v. X.

f(x) = kx(1 – x), for 0 < x < 1 and = 0, otherwise.

Also, find `P(1/4 < x < 1/2) and P(x < 1/2)`.


Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by f(x) = `1/5`, for 0 ≤ x ≤ 5 and = 0 otherwise.

Find the probability that the waiting time is more than 4 minutes.


Choose the correct option from the given alternative:

If the p.d.f of a.c.r.v. X is f (x) = 3 (1 − 2x2 ), for 0 < x < 1 and = 0, otherwise (elsewhere) then the c.d.f of X is F(x) =


Choose the correct option from the given alternative:

If a d.r.v. X takes values 0, 1, 2, 3, . . . which probability P (X = x) = k (x + 1)·5 −x , where k is a constant, then P (X = 0) =


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `((c_(x)^5 ))/2^5` , for x = 0, 1, 2, 3, 4, 5 and = 0, otherwise If a = P (X ≤ 2) and b = P (X ≥ 3), then E (X ) =


Choose the correct option from the given alternative:

If p.m.f. of a d.r.v. X is P (X = x) = `x^2 /(n (n + 1))`, for x = 1, 2, 3, . . ., n and = 0, otherwise then E (X ) =


Choose the correct option from the given alternative :

If p.m.f. of a d.r.v. X is P (x) = `c/ x^3` , for x = 1, 2, 3 and = 0, otherwise (elsewhere) then E (X ) =


The following is the c.d.f. of r.v. X

x -3 -2 -1 0 1 2 3 4
F(X) 0.1 0.3 0.5 0.65 0.75 0.85 0.9

1

P (X ≤ 3/ X > 0)


Let X be amount of time for which a book is taken out of library by randomly selected student and suppose X has p.d.f

f (x) = 0.5x, for 0 ≤ x ≤ 2 and = 0 otherwise. Calculate: P(x ≥ 1.5)


Find expected value and variance of X, the number on the uppermost face of a fair die.


F(x) is c.d.f. of discrete r.v. X whose distribution is

Xi – 2 – 1 0 1 2
Pi 0.2 0.3 0.15 0.25 0.1

Then F(–  3) = _______ .


Choose the correct alternative :

X: is number obtained on upper most face when a fair die….thrown then E(X) = _______.


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


X is r.v. with p.d.f. f(x) = `"k"/sqrt(x)`, 0 < x < 4 = 0 otherwise then x E(X) = _______


Fill in the blank :

If X is discrete random variable takes the value x1, x2, x3,…, xn then \[\sum\limits_{i=1}^{n}\text{P}(x_i)\] = _______


State whether the following is True or False :

If p.m.f. of discrete r.v. X is

x 0 1 2
P(X = x) q2 2pq p2 

then E(x) = 2p.


Solve the following problem :

Let X∼B(n,p) If E(X) = 5 and Var(X) = 2.5, find n and p.


If a d.r.v. X takes values 0, 1, 2, 3, … with probability P(X = x) = k(x + 1) × 5–x, where k is a constant, then P(X = 0) = ______


The p.m.f. of a d.r.v. X is P(X = x) = `{{:(((5),(x))/2^5",", "for"  x = 0","  1","  2","  3","  4","  5),(0",", "otherwise"):}` If a = P(X ≤ 2) and b = P(X ≥ 3), then


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(x/("n"("n" + 1))",", "for"  x = 1","  2","  3","  .... "," "n"),(0",", "otherwise"):}`, then E(X) = ______


If the p.m.f. of a d.r.v. X is P(X = x) = `{{:(("c")/x^3",", "for"  x = 1","  2","  3","),(0",", "otherwise"):}` then E(X) = ______


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as number greater than 4 appears on at least one die.


The probability distribution of a discrete r.v.X is as follows.

x 1 2 3 4 5 6
P(X = x) k 2k 3k 4k 5k 6k

Complete the following activity.

Solution: Since `sum"p"_"i"` = 1

P(X ≤ 4) = `square + square + square + square = square`


Using the following activity, find the expected value and variance of the r.v.X if its probability distribution is as follows.

x 1 2 3
P(X = x) `1/5` `2/5` `2/5`

Solution: µ = E(X) = `sum_("i" = 1)^3 x_"i""p"_"i"`

E(X) = `square + square + square = square`

Var(X) = `"E"("X"^2) - {"E"("X")}^2`

= `sum"X"_"i"^2"P"_"i" - [sum"X"_"i""P"_"i"]^2`

= `square - square`

= `square`


If F(x) is distribution function of discrete r.v.x with p.m.f. P(x) = `(x - 1)/(3)`; for x = 0, 1 2, 3, and P(x) = 0 otherwise then F(4) = _______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×