English

मान लीजिए कि f : W → W, f(n) = n - 1, यदि n विषम है तथा f(n) = n + 1, यदि n सम है, द्वारा परिभाषित है | सिद्ध कीजिए कि f व्युत्क्रमणीय है | f का प्रतिलोम ज्ञात कीजिए | यहाँ W समस्त पूर्णांकों का - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए कि f : W → W, f(n) = n - 1, यदि n विषम है तथा f(n) = n + 1, यदि n सम है, द्वारा परिभाषित है | सिद्ध कीजिए कि f व्युत्क्रमणीय है | f का प्रतिलोम ज्ञात कीजिए | यहाँ W समस्त पूर्णांकों का समुच्चय है |

Sum

Solution

f(n) = {n - 1, यदि n विषम है n + 1, यदि n सम है} द्वारा परिभाषित है | 

मान लीजिए f(m) = f(n)

जब n विषम और m सम हो तो,

n - 1 = m + 1

n - m = 2

जो की सम्बह्व नहीं है,

इसी तरह यदि n सम तथा m विषम हो तो ऐसा ही पाइनाम प्राप्त होगा। 0 अब यदि दोनों विषम हो तो,

m + 1 = n + 1

m = n

और यदि दोनों विषम हो तो,

n - 1 = m - 1

n = m

अतः f एकाकी है |

अतः स्पष्ट है की सहप्रांत w में स्थित हर विषम संख्या 2r + 1 प्रांत w में स्थित सम संख्या 2r का प्रतिबिम्ब है |

और सहप्रांत w में स्तिथ हर सम संख्या 2r प्रांत w में स्तिथ विषम संख्या 2r + 1 का प्रतिबिम्ब है। मतलब आच्छादक फलन है।

मान लीजिये g : W - W

g(m) = {m - 1, यदि n विषम है, m + 1, यदि n सम है} द्वारा परिभाषित है

जब n सम हो तो,

gof(n) = g(f(n)) = g(n + 1) = n + 1 - 1 = n

जब n विषम हो तो,

fofg(n) = f(g(n)) = g(n - 1) = n - 1 + 1 = n

अतः प्रतिलोमिया फलन है।

तथा f का प्रतिलोम f स्वयं है।

shaalaa.com
द्वि-आधारी संक्रियाएँ
  Is there an error in this question or solution?
Chapter 1: संबंध एवं फलन - अध्याय 1 पर विविध प्रश्नावली [Page 33]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 1 संबंध एवं फलन
अध्याय 1 पर विविध प्रश्नावली | Q 2. | Page 33

RELATED QUESTIONS

निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, a * b = ab द्वारा परिभाषित संक्रिया *


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

R में, संक्रिया *, a * b = ab2 द्वारा परिभाषित


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, संक्रिया *, a * b = |a - b| द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमय है तथा क्या * साहचर्य है।

Z में, a * b = a - b द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Q में, a * b = ab + 1 द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या  * साहचर्य है।

Q में, a * b = `(ab)/2`  द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Z+ में, a * b = 2ab द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Z+ में, a* b = ab द्वारा परिभाषित


समुच्चय {1, 2, 3, 4,5} में a ∧ b = निम्नतम {a, b} द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए। संक्रिया ∧ के लिए संक्रिया सारणी लिखिए।


समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी द्वारा परिभाषित द्विआधारी संक्रिया * पर विचार कीजिए तथा

(i) (2 * 3) * 4 तथा 2 * (3 * 4) का परिकलन कीजिए।

(ii) क्या * क्रमविनिमेय है?

(iii) (2 * 3) * (4 * 5) का परिकलन कीजिए।

(संकेत : निम्न सारणी का प्रयोग कीजिए।)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

मान लीजिए कि समुच्चय {1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया *’, a *’ b = a तथा b का HCF द्वारा परिभाषित है। क्या संक्रिया *’ उर्पयुक्त प्रश्न 4 में परिभाषित संक्रिया * के समान है? अपने उत्तर का औचित्य भी बतलाइए।


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

क्या संक्रिय * क्रमविनिमेय है?


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

क्या * साहचर्य है?


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

N के कौन से अवयव * संक्रिया के लिए व्युत्क्रमणीय है?


मान लीजिए कि N में a * b = a तथा b का HCF द्वारा परिभाषित एक द्विआधारी संक्रिया है। क्या * क्रमविनिमेय है? क्या * साहचर्य है? क्या N में इस द्विआधारी संक्रिया के तत्समक का अस्तित्व है?


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a - b

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a + ab

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = (a - b)2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

`a * b = a^b/4`

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = ab2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


बतलाइए कि क्या निम्नलिखित कथन सत्य हैं या असत्य हैं। औचित्य भी बतलाइए।

समुच्चय N में किसी भी स्वेच्छ द्विआधारी संक्रिया* के लिए a * a = a, ∀ a ∈ N

यदि N में * एक क्रमविनिमेय द्विआधारी संक्रिया है तो a * (b * c)=(c * b) * a


a * b = a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए।


निम्नलिखित प्रकार से समुच्चय {0, 1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया * परिभाषित कीजिए

a * b = `{(a+b","   "यदि"  a+b < 6), (a + b - 6","   "यदि"  a + b ≥ 6):}`

सिद्ध कीजिए कि शुन्य (0) इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव a ≠ 0 व्युत्क्रमणीय है, इस प्रकार कि 6 - a, a का प्रतिलोम है |


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×