मराठी

मान लीजिए कि f : W → W, f(n) = n - 1, यदि n विषम है तथा f(n) = n + 1, यदि n सम है, द्वारा परिभाषित है | सिद्ध कीजिए कि f व्युत्क्रमणीय है | f का प्रतिलोम ज्ञात कीजिए | यहाँ W समस्त पूर्णांकों का - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मान लीजिए कि f : W → W, f(n) = n - 1, यदि n विषम है तथा f(n) = n + 1, यदि n सम है, द्वारा परिभाषित है | सिद्ध कीजिए कि f व्युत्क्रमणीय है | f का प्रतिलोम ज्ञात कीजिए | यहाँ W समस्त पूर्णांकों का समुच्चय है |

बेरीज

उत्तर

f(n) = {n - 1, यदि n विषम है n + 1, यदि n सम है} द्वारा परिभाषित है | 

मान लीजिए f(m) = f(n)

जब n विषम और m सम हो तो,

n - 1 = m + 1

n - m = 2

जो की सम्बह्व नहीं है,

इसी तरह यदि n सम तथा m विषम हो तो ऐसा ही पाइनाम प्राप्त होगा। 0 अब यदि दोनों विषम हो तो,

m + 1 = n + 1

m = n

और यदि दोनों विषम हो तो,

n - 1 = m - 1

n = m

अतः f एकाकी है |

अतः स्पष्ट है की सहप्रांत w में स्थित हर विषम संख्या 2r + 1 प्रांत w में स्थित सम संख्या 2r का प्रतिबिम्ब है |

और सहप्रांत w में स्तिथ हर सम संख्या 2r प्रांत w में स्तिथ विषम संख्या 2r + 1 का प्रतिबिम्ब है। मतलब आच्छादक फलन है।

मान लीजिये g : W - W

g(m) = {m - 1, यदि n विषम है, m + 1, यदि n सम है} द्वारा परिभाषित है

जब n सम हो तो,

gof(n) = g(f(n)) = g(n + 1) = n + 1 - 1 = n

जब n विषम हो तो,

fofg(n) = f(g(n)) = g(n - 1) = n - 1 + 1 = n

अतः प्रतिलोमिया फलन है।

तथा f का प्रतिलोम f स्वयं है।

shaalaa.com
द्वि-आधारी संक्रियाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: संबंध एवं फलन - अध्याय 1 पर विविध प्रश्नावली [पृष्ठ ३३]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 1 संबंध एवं फलन
अध्याय 1 पर विविध प्रश्नावली | Q 2. | पृष्ठ ३३

संबंधित प्रश्‍न

निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, a * b = a - b द्वारा परिभाषित संक्रिया *


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, a * b = ab द्वारा परिभाषित संक्रिया *


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, संक्रिया *, a * b = |a - b| द्वारा परिभाषित


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया से * एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, संक्रिया *, a * b = a द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमय है तथा क्या * साहचर्य है।

Z में, a * b = a - b द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Q में, a * b = ab + 1 द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या  * साहचर्य है।

Q में, a * b = `(ab)/2`  द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Z+ में, a * b = 2ab द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Z+ में, a* b = ab द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

R - {- 1} में, a * b = `a/(b + 1)` द्वारा परिभाषित


समुच्चय {1, 2, 3, 4,5} में a ∧ b = निम्नतम {a, b} द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए। संक्रिया ∧ के लिए संक्रिया सारणी लिखिए।


समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी द्वारा परिभाषित द्विआधारी संक्रिया * पर विचार कीजिए तथा

(i) (2 * 3) * 4 तथा 2 * (3 * 4) का परिकलन कीजिए।

(ii) क्या * क्रमविनिमेय है?

(iii) (2 * 3) * (4 * 5) का परिकलन कीजिए।

(संकेत : निम्न सारणी का प्रयोग कीजिए।)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

5 * 7, 20 * 16


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a - b

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a + ab

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = (a - b)2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

`a * b = a^b/4`

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = ab2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।


मान लीजिए कि A = N × N है तथा A में (a, b) * (c, d) = (a + c, b + d) द्वारा परिभाषित एक द्विआधारी संक्रिया है। सिद्ध कीजिए कि * क्रमविनिमेय तथा साहचर्य है। A में * का तत्समक अवयव, यदि कोई है, तो ज्ञात कीजिए।


बतलाइए कि क्या निम्नलिखित कथन सत्य हैं या असत्य हैं। औचित्य भी बतलाइए।

समुच्चय N में किसी भी स्वेच्छ द्विआधारी संक्रिया* के लिए a * a = a, ∀ a ∈ N

यदि N में * एक क्रमविनिमेय द्विआधारी संक्रिया है तो a * (b * c)=(c * b) * a


a * b = a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए।


a * b = |a - b| तथा a o b = a, ∀ a, b ∈ R द्वारा परिभाषित द्विआधारी संक्रियाओं * : R × R → R तथा o : R × R → R पर विचार कीजिए | सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है | पुनः सिद्ध कीजिए कि सभी a, b, c ∈ R के लिए a * (b o c) = (a * b) o (a * c) है | यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित होती है | क्या o संक्रिया * पर वितरित है? अपने उत्तर का औचित्य भी बतलाइए |


समुच्चय {a, b} में द्विआधारी संक्रियाओं की संख्या है |


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×