Advertisements
Advertisements
Question
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = a - b
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
Solution
Q पर, ऑपरेशन * के रूप में परिभाषित किया गया है a * b = a - b.
यह देखा जा सकता है कि:
`1/2 . 1/3 = 1/2 - 1/3 = (3 - 2)/6 = 1/6` तथा `1/3 . 1/2 = 1/3 - 1/2 = (2 - 3)/6 = (-1)/6`
∴ `1/2 . 1/3 ne 1/3 . 1/2` कहाँ पे `1/2, 1/3` ∈ Q
इस प्रकार, ऑपरेशन * सराहनीय नहीं है।
यह भी देखा जा सकता है कि:
`(1/2 . 1/3). 1/4 = (1/2 - 1/3) . 1/4 = 1/6 . 1/4 = 1/6 - 1/4 = (2 - 3)/12 = (-1)/12`
`1/2 . (1/3 . 1/4) = 1/2 . (1/3 - 1/4) = 1/2 . 1/12 = 1/2 - 1/12 = (6 - 1)/12 = 5/12`
∴ `(1/2 . 1/3) . 1/4 ne 1/2 . (1/3 . 1/4)` जहां `1/2, 1/3, 1/4` ∈ Q
इस प्रकर, ऑपरेशन * सहयोगी नही है.
APPEARS IN
RELATED QUESTIONS
निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
Z+ में, a * b = a - b द्वारा परिभाषित संक्रिया *
निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
R में, संक्रिया *, a * b = ab2 द्वारा परिभाषित
निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमय है तथा क्या * साहचर्य है।
Z में, a * b = a - b द्वारा परिभाषित
निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।
Q में, a * b = ab + 1 द्वारा परिभाषित
निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।
Z+ में, a* b = ab द्वारा परिभाषित
समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी द्वारा परिभाषित द्विआधारी संक्रिया * पर विचार कीजिए तथा
(i) (2 * 3) * 4 तथा 2 * (3 * 4) का परिकलन कीजिए।
(ii) क्या * क्रमविनिमेय है?
(iii) (2 * 3) * (4 * 5) का परिकलन कीजिए।
(संकेत : निम्न सारणी का प्रयोग कीजिए।)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
क्या संक्रिय * क्रमविनिमेय है?
मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
क्या * साहचर्य है?
मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
N के कौन से अवयव * संक्रिया के लिए व्युत्क्रमणीय है?
क्या समुच्चय {1, 2, 3, 4, 5} में a * b = a तथा b का LCM द्वारा परिभाषित * एक द्विआधारी संक्रिया है? अपने उत्तर का औचित्य भी बतलाइए।
मान लीजिए कि N में a * b = a तथा b का HCF द्वारा परिभाषित एक द्विआधारी संक्रिया है। क्या * क्रमविनिमेय है? क्या * साहचर्य है? क्या N में इस द्विआधारी संक्रिया के तत्समक का अस्तित्व है?
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = a2 + b2
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = a + ab
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = (a - b)2
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = ab2
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
मान लीजिए कि A = N × N है तथा A में (a, b) * (c, d) = (a + c, b + d) द्वारा परिभाषित एक द्विआधारी संक्रिया है। सिद्ध कीजिए कि * क्रमविनिमेय तथा साहचर्य है। A में * का तत्समक अवयव, यदि कोई है, तो ज्ञात कीजिए।
a * b = a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए।
मान लीजिए कि f : W → W, f(n) = n - 1, यदि n विषम है तथा f(n) = n + 1, यदि n सम है, द्वारा परिभाषित है | सिद्ध कीजिए कि f व्युत्क्रमणीय है | f का प्रतिलोम ज्ञात कीजिए | यहाँ W समस्त पूर्णांकों का समुच्चय है |
a * b = |a - b| तथा a o b = a, ∀ a, b ∈ R द्वारा परिभाषित द्विआधारी संक्रियाओं * : R × R → R तथा o : R × R → R पर विचार कीजिए | सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है | पुनः सिद्ध कीजिए कि सभी a, b, c ∈ R के लिए a * (b o c) = (a * b) o (a * c) है | यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित होती है | क्या o संक्रिया * पर वितरित है? अपने उत्तर का औचित्य भी बतलाइए |
समुच्चय {a, b} में द्विआधारी संक्रियाओं की संख्या है |