Advertisements
Advertisements
Question
निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
Z+ में, a * b = a - b द्वारा परिभाषित संक्रिया *
Solution
Z+ पर, * द्वारा परिभाषित करें a * b = a - b
यहाँ (1, 2) के तहत * के रूप में की छवि के रूप में एक बाइनरी ऑपरेशन नहीं है
1 * 2 = 1 - 2
= 1 ∉ Z+
APPEARS IN
RELATED QUESTIONS
निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
Z+ में, a * b = ab द्वारा परिभाषित संक्रिया *
निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
R में, संक्रिया *, a * b = ab2 द्वारा परिभाषित
निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।
Z+ में, संक्रिया *, a * b = |a - b| द्वारा परिभाषित
निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमय है तथा क्या * साहचर्य है।
Z में, a * b = a - b द्वारा परिभाषित
निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।
Q में, a * b = `(ab)/2` द्वारा परिभाषित
निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।
Z+ में, a* b = ab द्वारा परिभाषित
निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।
R - {- 1} में, a * b = `a/(b + 1)` द्वारा परिभाषित
समुच्चय {1, 2, 3, 4,5} में a ∧ b = निम्नतम {a, b} द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए। संक्रिया ∧ के लिए संक्रिया सारणी लिखिए।
समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी द्वारा परिभाषित द्विआधारी संक्रिया * पर विचार कीजिए तथा
(i) (2 * 3) * 4 तथा 2 * (3 * 4) का परिकलन कीजिए।
(ii) क्या * क्रमविनिमेय है?
(iii) (2 * 3) * (4 * 5) का परिकलन कीजिए।
(संकेत : निम्न सारणी का प्रयोग कीजिए।)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
मान लीजिए कि समुच्चय {1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया *’, a *’ b = a तथा b का HCF द्वारा परिभाषित है। क्या संक्रिया *’ उर्पयुक्त प्रश्न 4 में परिभाषित संक्रिया * के समान है? अपने उत्तर का औचित्य भी बतलाइए।
मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
5 * 7, 20 * 16
मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
क्या संक्रिय * क्रमविनिमेय है?
मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:
N में * का तत्समक अवयव ज्ञात कीजिए।
मान लीजिए कि N में a * b = a तथा b का HCF द्वारा परिभाषित एक द्विआधारी संक्रिया है। क्या * क्रमविनिमेय है? क्या * साहचर्य है? क्या N में इस द्विआधारी संक्रिया के तत्समक का अस्तित्व है?
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = a2 + b2
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = a + ab
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:
a * b = (a - b)2
ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।
प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
मान लीजिए कि f : W → W, f(n) = n - 1, यदि n विषम है तथा f(n) = n + 1, यदि n सम है, द्वारा परिभाषित है | सिद्ध कीजिए कि f व्युत्क्रमणीय है | f का प्रतिलोम ज्ञात कीजिए | यहाँ W समस्त पूर्णांकों का समुच्चय है |
a * b = |a - b| तथा a o b = a, ∀ a, b ∈ R द्वारा परिभाषित द्विआधारी संक्रियाओं * : R × R → R तथा o : R × R → R पर विचार कीजिए | सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है | पुनः सिद्ध कीजिए कि सभी a, b, c ∈ R के लिए a * (b o c) = (a * b) o (a * c) है | यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित होती है | क्या o संक्रिया * पर वितरित है? अपने उत्तर का औचित्य भी बतलाइए |
समुच्चय {a, b} में द्विआधारी संक्रियाओं की संख्या है |