English

निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3x – 7 > 5x – 1 - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3x – 7 > 5x – 1

Sum

Solution

3x – 7 > 5x – 1

⇒ 3x – 7 + 7 > 5x – 1 + 7

⇒ 3x > 5x + 6

⇒ 3x – 5x > 5x + 6 – 5x

⇒ – 2x > 6

⇒ `(-2x)/-2 < 6/-2`

⇒ x < -3

इस प्रकार, सभी वास्तविक संख्याएँ x, जो –3 से कम हैं, दी गई असमिका का हल हैं। इसलिए, दी गई असमिका का हल समुच्चय (–∞, –3) है।

shaalaa.com
एक चर राशि के रैखिक असमिकाओं का बीजगणितीय हल और उनका आलेखीय निरूपण
  Is there an error in this question or solution?
Chapter 6: रैखिक असमिकाएँ - प्रश्नावली 6.1 [Page 130]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 6 रैखिक असमिकाएँ
प्रश्नावली 6.1 | Q 6. | Page 130

RELATED QUESTIONS

हल कीजिए: 24x < 100, जब x एक प्राकृत संख्या है।


हल कीजिए: 5x – 3 < 7, जब x एक पूर्णांक है।


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 4x + 3 < 6x + 7


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(x – 1) ≤ 2 (x – 3)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(2 – x) ≥ 2 (1 – x)


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/3 > x/2 + 1`


निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `(3(x-2))/5 <= (5(2-x))/3`


दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।

`x/2 >= (5x -2)/3 - (7x - 3)/5`


रवि ने पहली दो एकक परीक्षा में 70 और 75 अंक प्राप्त किए हैं। वह न्यूनतम अंक ज्ञात कीजिए, जिसे वह तीसरी एकक परीक्षा में पाकर 60 अंक का न्यूनतम औसत प्राप्त कर सके।


किसी पाठ्यक्रम में ग्रेड 'A' पाने के लिए एक व्यक्ति को सभी पाँच परीक्षाओं (प्रत्येक 100 अंकों में से) में 90 अंक या अधिक अंक का औसत प्राप्त करना चाहिए यदि सुनीता के प्रथम चार परीक्षाओं के प्राप्तांक 87,92, 94 और 95 हों तो वह न्यूनतम अंक ज्ञात कीजिए जिसे पांचवीं परीक्षा में प्राप्त करके सुनीता उस पाठ्यक्रम में ग्रेड 'A' पाएगी।


10 से कम क्रमागत विषम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनके योगफल 11 से अधिक हों।


एक त्रिभुज की सबसे बड़ी भुजा सबसे छोटी भुजा की तीन गुनी है तथा त्रिभुज की तीसरी भुजा सबसे बड़ी भुजा से 2 सेमी कम है। तीसरी भुजा की न्यूनतम लंबाई ज्ञात कीजिए जबकि त्रिभुज का परिमाप न्यूनतम 61 सेमी है।


एक व्यक्ति 91 सेमी लंबे बोर्ड में से तीन लंबाईयाँ काटना चाहता है। दूसरी लंबाई सबसे छोटो लंबाई से 3 सेमी अधिक और तीसरी लंबाई सबसे छोटी लंबाई की दूनी है। सबसे छोटे बोर्ड की संभावित लंबाई क्या है, यदि तीसरा टुकड़ा दूसरे टुकड़े से कम से कम 5 सेमी अधिक लंबा हो?

[संकेत: यदि सबसे छोटे बोर्ड की लंबाई x सेमी हो, तब (x + 3 ) सेमी और 2x सेमी क्रमश: दूसरे और तीसरे टुकड़ों की लंबाईयाँ हैं। इस प्रकार x + (x + 3) + 2x ≤ 91 और 2x ≥ (x + 3 ) + 5]


असमानता को हल कीजिए:

2 ≤ 3x – 4 ≤ 5


असमानता को हल कीजिए:

6 ≤ – 3 (2x – 4) < 12


असमानता को हल कीजिए:

- 3 ≤ 4 - `(7x)/2 ≤ 18` 


असमानता को हल कीजिए:

`-15 < (3(x -  2))/5 <= 0`


असमिका को हल कीजिए:

`-12 < 4 - (3x)/(-5) <= 2`


असमिका को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

2(x – 1) < x + 5, 3(x + 2) > 2 – x


असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।

3x – 7 > 2(x -6), 6 – x > 11 – 2x


ऐसी रैखिक असमिकाएँ ज्ञात कीजिए जिनका हल समुच्चय नीचे प्रदर्शित आकृति का छायांकित भाग है।

 


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×