Advertisements
Advertisements
Question
रवि ने पहली दो एकक परीक्षा में 70 और 75 अंक प्राप्त किए हैं। वह न्यूनतम अंक ज्ञात कीजिए, जिसे वह तीसरी एकक परीक्षा में पाकर 60 अंक का न्यूनतम औसत प्राप्त कर सके।
Solution
मान लीजिए तीसरे एकक परीक्षा में x अंक प्राप्त किए।
क्योंकि छात्र के पास कम से कम 60 अंक होने चाहिए।
प्रश्नअनुसार,
`(70 + 75 + x)/3 ≥ 60`
= `(145 + x)/3 ≥ 60`
3 से दोनों पक्षों में गुणा करने पर,
145 + x ≥ 180
= x ≥ 180 – 145
= x ≥ 35
अतः रवि को तीसरी परीक्षा में 35 से अधिक या उसके बराबर अंक प्राप्त करने हैं।
APPEARS IN
RELATED QUESTIONS
हल कीजिए: 24x < 100, जब x एक प्राकृत संख्या है।
हल कीजिए 24x < 100, जब x एक पूर्णांक है।
हल कीजिए: -12x > 30, जब x एक प्राकृत संख्या है।
हल कीजिए: 3x + 8 > 2, जब x एक पूर्णांक है।
हल कीजिए: 3x + 8 > 2, जब x एक वास्तविक संख्या है।
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3x – 7 > 5x – 1
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(x – 1) ≤ 2 (x – 3)
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(2 – x) ≥ 2 (1 – x)
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/4 < (5x - 2)/3 - (7x - 3)/5`
दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।
3(1 – x) < 2 (x + 4)
10 से कम क्रमागत विषम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनके योगफल 11 से अधिक हों।
एक व्यक्ति 91 सेमी लंबे बोर्ड में से तीन लंबाईयाँ काटना चाहता है। दूसरी लंबाई सबसे छोटो लंबाई से 3 सेमी अधिक और तीसरी लंबाई सबसे छोटी लंबाई की दूनी है। सबसे छोटे बोर्ड की संभावित लंबाई क्या है, यदि तीसरा टुकड़ा दूसरे टुकड़े से कम से कम 5 सेमी अधिक लंबा हो?
[संकेत: यदि सबसे छोटे बोर्ड की लंबाई x सेमी हो, तब (x + 3 ) सेमी और 2x सेमी क्रमश: दूसरे और तीसरे टुकड़ों की लंबाईयाँ हैं। इस प्रकार x + (x + 3) + 2x ≤ 91 और 2x ≥ (x + 3 ) + 5]
असमानता को हल कीजिए:
6 ≤ – 3 (2x – 4) < 12
असमानता को हल कीजिए:
- 3 ≤ 4 - `(7x)/2 ≤ 18`
असमानता को हल कीजिए:
`-15 < (3(x - 2))/5 <= 0`
असमिका को हल कीजिए:
`-12 < 4 - (3x)/(-5) <= 2`
असमिका को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।
2(x – 1) < x + 5, 3(x + 2) > 2 – x
असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।
5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47
प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।
प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।
प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।