English

O एक समांतर चतुर्भुज PQRS के विकर्ण PR पर स्थित कोई बिंदु है (आकृति)। सिद्ध कीजिए कि ar (PSO) = ar (PQO) है। - Mathematics (गणित)

Advertisements
Advertisements

Question

O एक समांतर चतुर्भुज PQRS के विकर्ण PR पर स्थित कोई बिंदु है (आकृति)। सिद्ध कीजिए कि ar (PSO) = ar (PQO) है।

Sum

Solution


दिया गया है - एक समांतर चतुर्भुज PQRS में, O विकर्ण PR पर कोई बिंदु है।

सिद्ध करना है - ar (ΔPSO) = ar (ΔPQO)

रचना - SQ को मिलाइए जो PR को B पर प्रतिच्छेद करती है।

उपपत्ति - हम जानते हैं कि, समांतर चतुर्भुज के विकर्ण परस्पर समद्विभाजित करते हैं, इसलिए B, SQ का मध्य-बिंदु है।

यहाँ, PB, ΔQPS की एक माध्यिका है और हम जानते हैं कि, एक त्रिभुज की एक माध्यिका इसे समान क्षेत्रफल वाले दो त्रिभुजों में विभाजित करती है।

∴ ar (ΔBPQ) = ar (ΔBPS)  ...(i)

साथ ही, OB, ∆OSQ की माध्यिका है।

∴ ar (ΔOBQ) = ar (ΔOBS)  ...(ii)

समीकरण (i) और (ii) को जोड़ने पर, हम पाते हैं।

ar (ΔBPQ) + ar (ΔOBQ) = ar (ΔBPS) + ar (ΔOBS)

⇒ ar (ΔPQO) = ar (ΔPSO)

अतः सिद्ध हुआ।

shaalaa.com
एक ही आधार पर और एक ही समांतर रेखाओं के बीच आकृतियाँ
  Is there an error in this question or solution?
Chapter 9: समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.3 [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.3 | Q 6. | Page 92

RELATED QUESTIONS

दी गई आकृति में, ABCD एक समांतर चतुर्भुज है, AE ⊥ DC और CF ⊥ AD है। यदि AB = 16 सेमी, AE = 8 सेमी और CF = 10 सेमी है, तो AD ज्ञात कीजिए।


D, E और F क्रमशः ΔABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। वो दिखाओ

(i) BDEF एक समांतर चतुर्भुज है।

(ii) ar (DEF) = `1/4`ar (ABC)

(iii) ar (BDEF) = `1/2`ar (ABC)


एक समलंब ABCD, जिसमें AB || DC हैं, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं | दर्शाइए कि ar(AOD) = ar(BOC) है |


दो समांतर चतुर्भुज बराबर आधारों पर और एक ही समांतर रेखाओं के बीच स्थित हैं। उनके क्षेत्रफलों का अनुपात है


एक त्रिभुज और एक समांतर चतुर्भुज एक ही आधार पर और एक ही समांतर रेखाओं के बीच स्थित हैं, तो त्रिभुज के क्षेत्रफल का समांतर चतुर्भुज के क्षेत्रफल से अनुपात है


ABCD एक समलंब है जिसकी समांतर भुजाएँ AB = a cm और DC = b cm है (आकृति)। E और F असमांतर भुजाओं के मध्य-बिंदु हैं। ar (ABFE) और ar (EFCD) का अनुपात हैं


PQRS एक आयत है, जो त्रिज्या 13 cm वाले एक वृत्त के चतुर्थांश के अंतर्गत है। A भुजा PQ पर स्थित कोई बिंदु है। यदि PS = 5 cm है, तो ar (PAS) = 30 cm2 है।  


X और Y त्रिभुज LMN की भुजा LN पर स्थित दो बिंदु इस प्रकार हैं कि LX = XY = YN हैं। X से होकर जाती हुई एक रेखा LM के समांतर खींची गई जो MN को Z पर मिलती है। (देखिए आकृति)। सिद्ध कीजिए कि ar (LZY) = ar (MZYX) है।


समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है (आकृति)। ज्ञात कीजिए :

  1. ar (ABEF) 
  2. ar (ABD) 
  3. ar (BEF) 


यदि किसी चतुर्भुज की भुजाओं के मध्य-बिंदुओं को क्रम से मिलाया जाता है, तो सिद्ध कीजिए कि इस प्रकार बने समांतर चतुर्भुज का क्षेत्रफल दिए हुए चतुर्भुज के क्षेत्रफल का आधा होता है (आकृति)।  

[संकेत : BD को मिलाइए और A से BD पर लंब खींचिए।]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×