Advertisements
Advertisements
Question
∠QPR = 90°, PS is its bisector. If ST ⊥ PR, prove that ST × (PQ + PR) = PQ × PR
Solution
Given: ∠QPR = 90°; PS is the bisector of ∠P. ST ⊥ ∠PR
To prove: ST × (PQ + PR) = PQ × PR
Proof: In ∆PQR, PS is the bisector of ∠P.
∴ `"PQ"/"QR" = "QS"/"SR"`
Adding (1) on both side
`1 + "PQ"/"QR" = 1 + "QS"/"SR"`
`("PR" + "PQ")/"PR" = ("SR"+ "QS")/"SR"`
`("PQ" + "PR")/"PR" = "QR"/"SR"` ...(1)
In ∆RST And ∆RQP
∠SRT = ∠QRP = ∠R ...(Common)
∴ ∠QRP = ∠STR = 90°
∆RST ~ RQP ...(By AA similarity)
`"SR"/"QR" = "ST"/"PQ"`
`"QR"/"SR" = "PQ"/"ST"` ...(2)
From (1) and (2) we get
`("PQ" + "PR")/"PR" = "PQ"/"ST"`
ST × (PQ + PR) = PQ × PR
APPEARS IN
RELATED QUESTIONS
In ∆ABC, D and E are points on the sides AB and AC respectively such that DE || BC
If `"AD"/"DB" = 3/4` and AC = 15 cm find AE
In ∆ABC, D and E are points on the sides AB and AC respectively such that DE || BC
If AD = 8x – 7, DB = 5x – 3, AE = 4x – 3 and EC = 3x – 1, find the value of x
ABCD is a trapezium in which AB || DC and P, Q are points on AD and BC respectively, such that PQ || DC if PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD
If PQ || BC and PR || CD prove that `"QB"/"AQ" = "DR"/"AR"`
In trapezium ABCD, AB || DC, E and F are points on non-parallel sides AD and BC respectively, such that EF || AB. Show that = `"AE"/"ED" = "BF"/"FC"`
Construct a ∆PQR in which the base PQ = 4.5 cm, ∠R = 35° and the median from R to RG is 6 cm.
Construct a ∆PQR in which QR = 5 cm, ∠P = 40° and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.
Construct a ∆PQR such that QR = 6.5 cm, ∠P = 60° and the altitude from P to QR is of length 4.5 cm
Draw a triangle ABC of base BC = 5.6 cm, ∠A = 40° and the bisector of ∠A meets BC at D such that CD = 4 cm
Two circles intersect at A and B. From a point, P on one of the circles lines PAC and PBD are drawn intersecting the second circle at C and D. Prove that CD is parallel to the tangent at P.