Advertisements
Advertisements
Question
If PQ || BC and PR || CD prove that `"QB"/"AQ" = "DR"/"AR"`
Solution
In ∆ABC, PQ || BC ...(Given)
By basic proportionality theorem
`"AP"/"PC" = "AQ"/"QB"` ...(1)
In ∆ADC, PR || CD ...(Given)
By basic proportionality theorem
`"AP"/"PC" = "AR"/"RD"` ...(2)
From (1) and (2) we get
`"AQ"/"QB" = "AP"/"RD"`
or
`"QB"/"AQ" = "DR"/"AR"`
APPEARS IN
RELATED QUESTIONS
In ∆ABC, D and E are points on the sides AB and AC respectively such that DE || BC
If `"AD"/"DB" = 3/4` and AC = 15 cm find AE
In ∆ABC, D and E are points on the sides AB and AC respectively such that DE || BC
If AD = 8x – 7, DB = 5x – 3, AE = 4x – 3 and EC = 3x – 1, find the value of x
In ΔABC, D and E are points on the sides AB and AC respectively. For the following case show that DE || BC
AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm.
DE || BC and CD || EE Prove that AD2 = AB × AF
Check whether AD is bisector of ∠A of ∆ABC of the following
AB = 4 cm, AC = 6 cm, BD = 1.6 cm and CD = 2.4 cm.
ABCD is a quadrilateral in which AB = AD, the bisector of ∠BAC and ∠CAD intersect the sides BC and CD at the points E and F respectively. Prove that EF || BD.
Construct a ∆PQR in which the base PQ = 4.5 cm, ∠R = 35° and the median from R to RG is 6 cm.
Construct a ∆PQR such that QR = 6.5 cm, ∠P = 60° and the altitude from P to QR is of length 4.5 cm
Draw a triangle ABC of base BC = 5.6 cm, ∠A = 40° and the bisector of ∠A meets BC at D such that CD = 4 cm
Draw ∆PQR such that PQ = 6.8 cm, vertical angle is 50° and the bisector of the vertical angle meets the base at D where PD = 5.2 cm