English
Karnataka Board PUCPUC Science Class 11

Radioactive Isotopes Are Produced in a Nuclear Physics Experiment at a Constant Rate Dn/Dt = R. an Inductor of Inductance 100 Mh, a Resistor of Resistance 100 ω and a Battery - Physics

Advertisements
Advertisements

Question

Radioactive isotopes are produced in a nuclear physics experiment at a constant rate dN/dt = R. An inductor of inductance 100 mH, a resistor of resistance 100 Ω and a battery are connected to form a series circuit. The circuit is switched on at the instant the production of radioactive isotope starts. It is found that i/N remains constant in time where i is the current in the circuit at time t and N is the number of active nuclei at time t. Find the half-life of the isotope.

Sum

Solution

Given:
Resistance of resistor, R = 100 Ω
Inductance of an inductor, L = 100 mH

Current (i) at any time (t) is given by

`i = i_0 (1-e^((-Rt)/L))`

Number of active nuclei (N) at any time (t) is given by 

`N = N_0e^(-lambdat)`

Where N0 = Total number of nuclei

`lambda` = Disintegration constant
Now,

`i/N = (i_0(1-e^(-tR"/"L)))/(N_0e^(-lambdat)`

As `i/N` is independent of time, coefficients of t are equal.

Let `t_1/2` be the half-life of the isotope.

⇒ `(-R)/L = -lambda`

⇒ `R/L = 0.693/t_"1/2"`

⇒ `t_(1/2) = 0.693 xx 10^-3 = 6.93 xx 10^-4  "s"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: The Nucleus - Exercises [Page 444]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 24 The Nucleus
Exercises | Q 46 | Page 444

RELATED QUESTIONS

For the past some time, Aarti had been observing some erratic body movement, unsteadiness and lack of coordination in the activities of her sister Radha, who also used to complain of severe headache occasionally. Aarti suggested to her parents to get a medical check-up of Radha. The doctor thoroughly examined Radha and diagnosed that she has a brain tumour.

(a) What, according to you, are the values displayed by Aarti?

(b) How can radioisotopes help a doctor to diagnose brain tumour?


Write nuclear reaction equation for α-decay of `""_94^242"Pu"`.


Write nuclear reaction equation for β-decay of `""_15^32"P"`.


Write nuclear reaction equation for β-decay of `""_83^210"Bi"`.


Write nuclear reaction equation for β+-decay of `""_43^97"Tc"`.


State the law of radioactive decay. hence derive the relation N = Noe-λt . Represent it graphically.


The half-life of 199Au is 2.7 days. (a) Find the activity of a sample containing 1.00 µg of 198Au. (b) What will be the activity after 7 days? Take the atomic weight of 198Au to be 198 g mol−1.


A certain sample of a radioactive material decays at the rate of 500 per second at a certain time. The count rate falls to 200 per second after 50 minutes. (a) What is the decay constant of the sample? (b) What is its half-life?


The half-life of a radioisotope is 10 h. Find the total number of disintegration in the tenth hour measured from a time when the activity was 1 Ci.


The selling rate of a radioactive isotope is decided by its activity. What will be the second-hand rate of a one month old 32P(t1/2 = 14.3 days) source if it was originally purchased for 800 rupees?


A vessel of volume 125 cm3 contains tritium (3H, t1/2 = 12.3 y) at 500 kPa and 300 K. Calculate the activity of the gas.


The count rate of nuclear radiation coming from a radiation coming from a radioactive sample containing 128I varies with time as follows.

Time t (minute): 0 25 50 75 100
Ctount rate R (109 s−1): 30 16 8.0 3.8 2.0

(a) Plot In (R0/R) against t. (b) From the slope of the best straight line through the points, find the decay constant λ. (c) Calculate the half-life t1/2.


Natural water contains a small amount of tritium (`""_1^3H`). This isotope beta-decays with a half-life of 12.5 years. A mountaineer while climbing towards a difficult peak finds debris of some earlier unsuccessful attempt. Among other things he finds a sealed bottled of whisky. On returning, he analyses the whisky and finds that it contains only 1.5 per cent of the `""_1^3H` radioactivity as compared to a recently purchased bottle marked '8 years old'. Estimate the time of that unsuccessful attempt.


4 × 1023 tritium atoms are contained in a vessel. The half-life of decay tritium nuclei is 12.3 y. Find (a) the activity of the sample, (b) the number of decay in the next 10 hours (c) the number of decays in the next 6.15 y.


A human body excretes (removes by waste discharge, sweating, etc.) certain materials by a law similar to radioactivity. If technetium is injected in some form in a human body, the body excretes half the amount in 24 hours. A patient is given an injection containing 99Tc. This isotope is radioactive with a half-life of 6 hours. The activity from the body just after the injection is 6 μCi. How much time will elapse before the activity falls to 3 μCi?


A charged capacitor of capacitance C is discharged through a resistance R. A radioactive sample decays with an average-life τ. Find the value of R for which the ratio of the electrostatic field energy stored in the capacitor to the activity of the radioactive sample remains constant in time.


`""_83^212"Bi"` can disintegrate either by emitting an α-particle of by emitting a β-particle. (a) Write the two equations showing the products of the decays. (b) The probabilities of disintegration α-and β-decays are in the ratio 7/13. The overall half-life of 212Bi is one hour. If 1 g of pure 212Bi is taken at 12.00 noon, what will be the composition of this sample at 1 P.m. the same day?


Copy and complete the following table for a radioactive element whose half-life is 10 minutes. Assume that you have 30g of this element at t = 0.

 


Half-life of a certain radioactive material is 8 hours.

Find the disintegration constant of this material.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×