English
Karnataka Board PUCPUC Science Class 11

Show that If the Room Temperature Changes by a Small Amount from T to T + ∆T, the Fundamental Frequency - Physics

Advertisements
Advertisements

Question

Show that if the room temperature changes by a small amount from T to T + ∆T, the fundamental frequency of an organ pipe changes from v to v + ∆v, where \[\frac{∆ v}{v} = \frac{1}{2}\frac{∆ T}{T} .\]

Sum

Solution

Let f  be the frequency of an open pipe at a temperature T. When the fundamental frequency of an organ pipe changes from v to v + ∆v, the temperature changes from T to T + ∆T.

We know that : 

\[\nu \propto   \sqrt{T}       .  .  .  .  . \left( i \right)\]

According to the question,

\[\nu +  ∆ \nu \propto   \sqrt{∆ T + T}\]

 Applying this in equation (i), we get:

\[\frac{\nu + ∆ \nu}{\nu} = \sqrt{\frac{∆ T + T}{T}}\]

\[1 + \frac{∆ \nu}{\nu} =  \left( 1 + \frac{∆ T}{T} \right)^{1/2} \]

By expanding the right-hand side of the above equation using the binomial theorem, we get:

\[1 + \frac{∆ \nu}{\nu} = 1 + \frac{1}{2} \times \frac{∆ T}{T}\] (neglecting the higher terms)

\[\frac{∆ \nu}{\nu} = \frac{1}{2}\frac{∆ T}{T}\]

shaalaa.com
Wave Motion
  Is there an error in this question or solution?
Chapter 16: Sound Waves - Exercise [Page 355]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 16 Sound Waves
Exercise | Q 52 | Page 355

RELATED QUESTIONS

A string clamped at both ends vibrates in its fundamental mode. Is there any position (except the ends) on the string which can be touched without disturbing the motion? What if the string vibrates in its first overtone?


A small source of sounds moves on a circle as shown in figure and an observer is sitting at O. Let \[v_1, v_2,    v_3\] be the frequencies heard when the source is at A, B and C respectively.


A source of sound moves towards an observer.


A listener is at rest with respect to the source of sound. A wind starts blowing along the line joining the source and the observer. Which of the following quantities do not change?
(a) Frequency
(b) Velocity of sound
(c) Wavelength
(d) Time period


A sound wave frequency 100 Hz is travelling in air. The speed of sound in air is 350 m s−1. (a) By how much is the phase changed at a given point in 2.5 ms? (b) What is the phase difference at a given instant between two points separated by a distance of 10.0 cm along the direction of propagation?


Two point sources of sound are kept at a separation of 10 cm. They vibrate in phase to produce waves of wavelength 5.0 cm.  What would be the phase difference between the two waves arriving at a point 20 cm from one source (a) on the line joining the sources and (b) on the perpendicular bisector of the line joining the sources?


Calculate the bulk modulus of air from the following data about a sound wave of wavelength 35 cm travelling in air. The pressure at a point varies between (1.0 × 105 ± 14) Pa and the particles of the air vibrate in simple harmonic motion of amplitude 5.5 × 10−6 m.


The length of the wire shown in figure between the pulley is 1⋅5 m and its mass is 12⋅0 g. Find the frequency of vibration with which the wire vibrates in two loops leaving the middle point of the wire between the pulleys at rest.


The intensity of sound from a point source is 1.0 × 10−8 W m−2 at a distance of 5.0 m from the source. What will be the intensity at a distance of 25 m from the source?


If the sound level in a room is increased from 50 dB to 60 dB, by what factor is the pressure amplitude increased?


Two coherent narrow slits emitting sound of wavelength λ in the same phase are placed parallel to each other at a small separation of 2λ. The sound is detected by moving a detector on the screen ∑ at a distance D(>>λ) from the slit S1 as shown in figure. Find the distance x such that the intensity at P is equal to the intensity at O.


In a standing wave pattern in a vibrating air column, nodes are formed at a distance of 4.0 cm. If the speed of sound in air is 328 m s−1, what is the frequency of the source?


The fundamental frequency of a closed pipe is 293 Hz when the air in it is a temperature of 20°C. What will be its fundamental frequency when the temperature changes to 22°C?


A tuning fork of frequency 256 Hz produces 4 beats per second with a wire of length 25 cm vibrating in its fundamental mode. The beat frequency decreases when the length is slightly shortened. What could be the minimum length by which the wire we shortened so that it produces no beats with the tuning fork?


A traffic policeman standing on a road sounds a whistle emitting the main frequency of 2.00 kHz. What could be the apparent frequency heard by a scooter-driver approaching the policeman at a speed of 36.0 km h−1? Speed of sound in air = 340 m s−1.


A boy riding on his bike is going towards east at a speed of 4√2 m s−1. At a certain point he produces a sound pulse of frequency 1650 Hz that travels in air at a speed  of 334 m s−1. A second boy stands on the ground 45° south of east from his. Find the frequency of the pulse as received by the second boy.


A person standing on a road sends a sound signal to the driver of a car going away from him at a speed of 72 km h−1. The signal travelling at 330 m s−1 in air and having a frequency of 1600 Hz gets reflected from the body of the car and returns. Find the frequency of the reflected signal as heard by the person.


With propagation of longitudinal waves through a medium, the quantity transmitted is ______.


During propagation of a plane progressive mechanical wave ______.

  1. all the particles are vibrating in the same phase.
  2. amplitude of all the particles is equal.
  3. particles of the medium executes S.H.M.
  4. wave velocity depends upon the nature of the medium.

A transverse wave is represented by y = 2sin (ωt - kx) cm. The value of wavelength (in cm) for which the wave velocity becomes equal to the maximum particle velocity, will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×