English

During propagation of a plane progressive mechanical wave ______. all the particles are vibrating in the same phase. amplitude of all the particles is equal. particles of the medium executes S.H.M. - Physics

Advertisements
Advertisements

Question

During propagation of a plane progressive mechanical wave ______.

  1. all the particles are vibrating in the same phase.
  2. amplitude of all the particles is equal.
  3. particles of the medium executes S.H.M.
  4. wave velocity depends upon the nature of the medium.
Fill in the Blanks
Short Note

Solution

b, c and d

Explanation:

During the propagation of a plane progressive mechanical wave, as shown in the diagram, the amplitude of all the particles is equal.

a. Clearly, the particles O, A and B are having different phases.

b. Particles of the wave shown in the figure are having up and down SHM.

c. For a progressive wave propagating in a fluid.

Speed = v = `sqrt(B/ρ)`

Hence, `v ∝ sqrt(1/ρ)`  ......[∵ B is constant]

d. As ρ depends upon the nature of the medium, hence v also depends upon the nature of the medium.

shaalaa.com
Wave Motion
  Is there an error in this question or solution?
Chapter 15: Waves - Exercises [Page 108]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 15 Waves
Exercises | Q 15.14 | Page 108

RELATED QUESTIONS

A string clamped at both ends vibrates in its fundamental mode. Is there any position (except the ends) on the string which can be touched without disturbing the motion? What if the string vibrates in its first overtone?


Two loudspeakers are arranged facing each other at some distance. Will a person standing behind one of the loudspeakers clearly hear the sound of the other loudspeaker or the clarity will be seriously damaged because of the 'collision' of the two sounds in between?


When we clap our hands, the sound produced is best described by Here p denotes the change in pressure from the equilibrium value.


A particular guitar wire is 30⋅0 cm long and vibrates at a frequency of 196 Hz when no finger is placed on it. The next higher notes on the scale are 220 Hz, 247 Hz, 262 Hz and 294 Hz. How far from the end of the string must the finger be placed to play these notes?


A source S and a detector D are placed at a distance d apart. A big cardboard is placed at a distance \[\sqrt{2}d\] from the source and the detector as shown in figure. The source emits a wave of wavelength = d/2 which is received by the detector after reflection from the cardboard. It is found to be in phase with the direct wave received from the source. By what minimum distance should the cardboard be shifted away so that the reflected wave becomes out of phase with the direct wave?


Three sources of sound S1, S2 and S3 of equal intensity are placed in a straight line with S1S2 = S2S3. At a point P, far away from the sources, the wave coming from S2 is 120° ahead in phase of that from S1. Also, the wave coming from S3 is 120° ahead of that from S2. What would be the resultant intensity of sound at P?


A tuning fork of frequency 256 Hz produces 4 beats per second with a wire of length 25 cm vibrating in its fundamental mode. The beat frequency decreases when the length is slightly shortened. What could be the minimum length by which the wire we shortened so that it produces no beats with the tuning fork?


A source of sound emitting a 1200 Hz note travels along a straight line at a speed of 170 m s−1. A detector is placed at a distance 200 m from the line of motion of the source. (a) Find the frequency of sound receive by the detector at the instant when the source gets closest to it. (b) Find the distance between the source and the detector at the instant in detects the frequency 1200 Hz. Velocity of sound in air = 340 m s−1.


Which of the following statements are true for wave motion?


Equation of a plane progressive wave is given by `y = 0.6 sin 2π (t - x/2)`. On reflection from a denser medium its amplitude becomes 2/3 of the amplitude of the incident wave. The equation of the reflected wave is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×