हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Show that If the Room Temperature Changes by a Small Amount from T to T + ∆T, the Fundamental Frequency - Physics

Advertisements
Advertisements

प्रश्न

Show that if the room temperature changes by a small amount from T to T + ∆T, the fundamental frequency of an organ pipe changes from v to v + ∆v, where \[\frac{∆ v}{v} = \frac{1}{2}\frac{∆ T}{T} .\]

योग

उत्तर

Let f  be the frequency of an open pipe at a temperature T. When the fundamental frequency of an organ pipe changes from v to v + ∆v, the temperature changes from T to T + ∆T.

We know that : 

\[\nu \propto   \sqrt{T}       .  .  .  .  . \left( i \right)\]

According to the question,

\[\nu +  ∆ \nu \propto   \sqrt{∆ T + T}\]

 Applying this in equation (i), we get:

\[\frac{\nu + ∆ \nu}{\nu} = \sqrt{\frac{∆ T + T}{T}}\]

\[1 + \frac{∆ \nu}{\nu} =  \left( 1 + \frac{∆ T}{T} \right)^{1/2} \]

By expanding the right-hand side of the above equation using the binomial theorem, we get:

\[1 + \frac{∆ \nu}{\nu} = 1 + \frac{1}{2} \times \frac{∆ T}{T}\] (neglecting the higher terms)

\[\frac{∆ \nu}{\nu} = \frac{1}{2}\frac{∆ T}{T}\]

shaalaa.com
Wave Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Sound Waves - Exercise [पृष्ठ ३५५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 16 Sound Waves
Exercise | Q 52 | पृष्ठ ३५५

संबंधित प्रश्न

The wavelengths of two sound waves in air are `81/173`m and `81/170`m. They produce 10 beats per second. Calculate the velocity of sound in air


What is the smallest positive phase constant which is equivalent to 7⋅5 π?


A string clamped at both ends vibrates in its fundamental mode. Is there any position (except the ends) on the string which can be touched without disturbing the motion? What if the string vibrates in its first overtone?


Can you hear your own words if you are standing in a perfect vacuum? Can you hear your friend in the same conditions?


Two loudspeakers are arranged facing each other at some distance. Will a person standing behind one of the loudspeakers clearly hear the sound of the other loudspeaker or the clarity will be seriously damaged because of the 'collision' of the two sounds in between?


The bulk modulus and the density of water are greater than those of air. With this much of information, we can say that velocity of sound in air


When sound wave is refracted from air to water, which of the following will remain unchanged?


A source of sound moves towards an observer.


A steel tube of length 1.00 m is struck at one end. A person with his ear closed to the other end hears the sound of the blow twice, one travelling through the body of the tube and the other through the air in the tube. Find the time gap between the two hearings. Use the table in the text for speeds of sound in various substances.


Calculate the bulk modulus of air from the following data about a sound wave of wavelength 35 cm travelling in air. The pressure at a point varies between (1.0 × 105 ± 14) Pa and the particles of the air vibrate in simple harmonic motion of amplitude 5.5 × 10−6 m.


The intensity of sound from a point source is 1.0 × 10−8 W m−2 at a distance of 5.0 m from the source. What will be the intensity at a distance of 25 m from the source?


A particular guitar wire is 30⋅0 cm long and vibrates at a frequency of 196 Hz when no finger is placed on it. The next higher notes on the scale are 220 Hz, 247 Hz, 262 Hz and 294 Hz. How far from the end of the string must the finger be placed to play these notes?


The noise level in a classroom in absence of the teacher is 50 dB when 50 students are present. Assuming that on the average each student output same sound energy per second, what will be the noise level if the number of students is increased to 100?


A uniform horizontal rod of length 40 cm and mass 1⋅2 kg is supported by two identical wires as shown in figure. Where should a mass of 4⋅8 kg be placed on the rod so that the same tuning fork may excite the wire on left into its fundamental vibrations and that on right into its first overtone? Take g = 10 m s−2.


The two sources of sound, S1 and S2, emitting waves of equal wavelength 20.0 cm, are placed with a separation of 20.0 cm between them. A detector can be moved on a line parallel to S1 S2 and at a distance of 20.0 cm from it. Initially, the detector is equidistant from the two sources. Assuming that the waves emitted by the sources are in detector should be shifted to detect a minimum of sound.


A traffic policeman standing on a road sounds a whistle emitting the main frequency of 2.00 kHz. What could be the apparent frequency heard by a scooter-driver approaching the policeman at a speed of 36.0 km h−1? Speed of sound in air = 340 m s−1.


With propagation of longitudinal waves through a medium, the quantity transmitted is ______.


Which of the following statements are true for wave motion?


The speed of a wave in a string is 20 m/s and the frequency is 50 Hz. The phase difference between two points on the string 10 cm apart will be ______.


A small speaker delivers 2W of audio output. At what distance from the speaker will one detect 120 dB intensity sound?

[Given reference intensity of sound as 10-12W/m2]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×