English
Karnataka Board PUCPUC Science Class 11

The length of the wire shown in figure (15-E8) between the pulley is 1⋅5 m and its mass is 12⋅0 g. Find the frequency of vibration with which the wire vibrates in two - Physics

Advertisements
Advertisements

Question

The length of the wire shown in figure between the pulley is 1⋅5 m and its mass is 12⋅0 g. Find the frequency of vibration with which the wire vibrates in two loops leaving the middle point of the wire between the pulleys at rest.

Sum

Solution

Given:
Length of the wire between two pulleys (L) = 1.5 m
Mass of the wire = 12 gm

\[\text{ Mass  per  unit   length,}   m = \frac{12}{1 . 5}  g/m\] 

\[ = 8 \times  {10}^{- 3}   kg/m\]

\[Tension  in  the   wire,   T = 9 \times g\] 

\[ = 90  \text{ N }\]

Fundamental frequency is given by:
\[f_0  = \frac{1}{2L}  \sqrt{\left( \frac{T}{m} \right)}\]
For second harmonic (when two loops are produced):

\[f_1  = 2 f_0  = \frac{1}{1 . 5}  \sqrt{\left( \frac{90}{8} \times {10}^{- 3} \right)}\] 

\[  = \frac{\left( 106 . 06 \right)}{1 . 5}\] 

\[ = 70 . 7  Hz \approx 70  Hz\]

shaalaa.com
Wave Motion
  Is there an error in this question or solution?
Chapter 15: Wave Motion and Waves on a String - Exercise [Page 326]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 15 Wave Motion and Waves on a String
Exercise | Q 39 | Page 326

RELATED QUESTIONS

The wavelengths of two sound waves in air are `81/173`m and `81/170`m. They produce 10 beats per second. Calculate the velocity of sound in air


When we clap our hands, the sound produced is best described by Here p denotes the change in pressure from the equilibrium value.


A tuning fork sends sound waves in air. If the temperature of the air increases, which of the following parameters will change?


When two waves with same frequency and constant phase difference interfere,


A steel tube of length 1.00 m is struck at one end. A person with his ear closed to the other end hears the sound of the blow twice, one travelling through the body of the tube and the other through the air in the tube. Find the time gap between the two hearings. Use the table in the text for speeds of sound in various substances.


At what temperature will the speed of sound be double of its value at 0°C?


The absolute temperature of air in a region linearly increases from T1 to T2 in a space of width d. Find the time taken by a sound wave to go through the region in terms of T1T2d and the speed v of sound at 273 K. Evaluate this time for T1 = 280 K, T2 = 310 K, d = 33 m and v = 330 m s−1.


A particular guitar wire is 30⋅0 cm long and vibrates at a frequency of 196 Hz when no finger is placed on it. The next higher notes on the scale are 220 Hz, 247 Hz, 262 Hz and 294 Hz. How far from the end of the string must the finger be placed to play these notes?


Two speakers S1 and S2, driven by the same amplifier, are placed at y = 1.0 m and y = −1.0 m(See figure). The speakers vibrate in phase at 600 Hz. A man stands at a point on the X-axis at a very large distance from the origin and starts moving parallel to the Y-axis. The speed of sound in air is 330 m s−1. (a) At what angle θ will the intensity of sound drop to a minimum for the first time? (b) At what angle will he hear a maximum of sound intensity for the first time? (c) If he continues to walk along the line, how many more can he hear?


Two coherent narrow slits emitting sound of wavelength λ in the same phase are placed parallel to each other at a small separation of 2λ. The sound is detected by moving a detector on the screen ∑ at a distance D(>>λ) from the slit S1 as shown in figure. Find the distance x such that the intensity at P is equal to the intensity at O.


Figure shown two coherent sources S1 and S2 which emit sound of wavelength λ in phase. The separation between the sources is 3λ. A circular wire of large radius is placed in such way that S1,S2 is at the centre of the wire. Find the angular positions θ on the wire for which constructive interference takes place.


A traffic policeman standing on a road sounds a whistle emitting the main frequency of 2.00 kHz. What could be the apparent frequency heard by a scooter-driver approaching the policeman at a speed of 36.0 km h−1? Speed of sound in air = 340 m s−1.


A train running at 108 km h−1 towards east whistles at a dominant frequency of 500 Hz. Speed of sound in air is 340 m/s. What frequency will a passenger sitting near the open window hear? (b) What frequency will a person standing near the track hear whom the train has just passed? (c) A wind starts blowing towards east at a speed of 36 km h−1. Calculate the frequencies heard by the passenger in the train and by the person standing near the track.


A source of sound emitting a 1200 Hz note travels along a straight line at a speed of 170 m s−1. A detector is placed at a distance 200 m from the line of motion of the source. (a) Find the frequency of sound receive by the detector at the instant when the source gets closest to it. (b) Find the distance between the source and the detector at the instant in detects the frequency 1200 Hz. Velocity of sound in air = 340 m s−1.


A small source of sound S of frequency 500 Hz is attached to the end of a light string and is whirled in a vertical circle of radius 1.6 m. The string just remains tight when the source is at the highest point. (a) An observer is located in the same vertical plane at a large distance and at the same height as the centre of the circle. The speed of sound in air = 330 m s−1 and = 10 m s−2. Find the maximum frequency heard by the observer. (b) An observer is situated at a large distance vertically above the centre of the circle. Find the frequency heard by the observer corresponding to the sound emitted by the source when it is at the same height as the centre.


For the propagation of longitudinal waves, the medium must have

  1. elasticity
  2. mass
  3. inertia
  4. force of cohesion

Equation of a plane progressive wave is given by `y = 0.6 sin 2π (t - x/2)`. On reflection from a denser medium its amplitude becomes 2/3 of the amplitude of the incident wave. The equation of the reflected wave is ______.


In the wave equation

`y = 0.5sin  (2pi)/lambda(400t - x)m`

the velocity of the wave will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×