Advertisements
Advertisements
Question
Show that the points (−4, −1), (−2, −4) (4, 0) and (2, 3) are the vertices points of a rectangle.
Solution
The distance d between two points (x1 ,y1) and (x2 , y2) is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2 )^2)`
In a rectangle, the opposite sides are equal in length. The diagonals of a rectangle are also equal in length.
Here the four points are A(−4,−1), B(−2,−4), C(4,0) and D(2,3).
First let us check the length of the opposite sides of the quadrilateral that is formed by these points.
`AB = sqrt((-4 + 2 )^2 + (-1 + 4)^2)`
`=sqrt((-2)^2 + (3)^2)`
` = sqrt(4 + 9)`
`AB = sqrt(13)`
`CD = sqrt((4 - 2)^2 + (0 -3)^2)`
`= sqrt((2)^2 + (-3)^2)`
` = sqrt(4+9)`
`CD = sqrt(13)`
We have one pair of opposite sides equal.
Now, let us check the other pair of opposite sides.
`BC = sqrt((-2-4)^2+(-4-0)^2)`
`=sqrt((-6)^2 + (-4)^2)`
`=sqrt(36 + 16)`
`BC = sqrt(52) `
`AD = sqrt((-4-2)^2 + (-1-3)^2)`
`= sqrt((-6)^2 + (-4)^2)`
`=sqrt(36 + 16) `
`BC = sqrt(52)`
The other pair of opposite sides are also equal. So, the quadrilateral formed by these four points is definitely a parallelogram.
For a parallelogram to be a rectangle we need to check if the diagonals are also equal in length.
`AC = sqrt((-4-4)^2 + (-1-0)^2)`
`= sqrt((-8)^2 + (-1)^2)`
`= sqrt(64+1)`
`AC = sqrt(65)`
`BD = sqrt((-2-2)^2 + (-4-3)^2)`
`= sqrt((-4)^2 + (-7)^2)`
` = sqrt(16+49)`
`BD = sqrt(65)`
Now since the diagonals are also equal we can say that the parallelogram is definitely a rectangle.
Hence we have proved that the quadrilateral formed by the four given points is a rectangle .
APPEARS IN
RELATED QUESTIONS
(Street Plan): A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines.
There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
- how many cross - streets can be referred to as (4, 3).
- how many cross - streets can be referred to as (3, 4).
Find the points of trisection of the line segment joining the points:
5, −6 and (−7, 5),
Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).
If the points A (a, -11), B (5, b), C (2, 15) and D (1, 1) are the vertices of a parallelogram ABCD, find the values of a and b.
If p(x , y) is point equidistant from the points A(6, -1) and B(2,3) A , show that x – y = 3
`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`
Find the ratio in which the line segment joining the points A(3, 8) and B(–9, 3) is divided by the Y– axis.
Mark the correct alternative in each of the following:
The point of intersect of the coordinate axes is
Find the value of k, if the points A (8, 1) B(3, −4) and C(2, k) are collinear.
Find the value of a for which the area of the triangle formed by the points A(a, 2a), B(−2, 6) and C(3, 1) is 10 square units.
Find the value(s) of k for which the points (3k − 1, k − 2), (k, k − 7) and (k − 1, −k − 2) are collinear.
what is the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\] .
Find the distance between the points \[\left( - \frac{8}{5}, 2 \right)\] and \[\left( \frac{2}{5}, 2 \right)\] .
If A (2, 2), B (−4, −4) and C (5, −8) are the vertices of a triangle, than the length of the median through vertex C is
If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is
Write the X-coordinate and Y-coordinate of point P(– 5, 4)
Signs of the abscissa and ordinate of a point in the second quadrant are respectively.
Point (0, –7) lies ______.
The point at which the two coordinate axes meet is called the ______.
If the vertices of a parallelogram PQRS taken in order are P(3, 4), Q(–2, 3) and R(–3, –2), then the coordinates of its fourth vertex S are ______.