Advertisements
Advertisements
Question
सोबतच्या आकृतीत, ∆ABC मध्ये, AB = BC, AC = `2sqrt2`, ∠ABC = 90°. तर AB ची लांबी किती?
Solution
AB = BC ....…[पक्ष]
∴ ∠A = ∠C ....................[समद्विभुज त्रिकोणाचे प्रमेय]
समजा, ∠A = ∠C = x ...(i)
∆ABC मध्ये, ∠A + ∠B + ∠C = 180° ...............[त्रिकोणाच्या तिन्ही कोनांच्या मापांची बेरीज 180° असते.]
∴ x + 90° + x = 180° ...[(i) वरून]
∴ 2x = 90°
∴ x = `90^circ/2` ........[(i) वरून]
∴ x = 45°
∴ ∠BAC = ∠BCA = 45°
∴ ∆ABC हा 45° – 45° – 90° त्रिकोण आहे.
∴ AB = BC = `1/sqrt2 xx "AC"` ......[45° कोनासमोरील बाजू]
= `1/sqrt2 xx 2sqrt2`
∴ l(AB) = 2 एकक
APPEARS IN
RELATED QUESTIONS
आकृती मधील ΔPSR मध्ये दिलेल्या माहितीवरून RP आणि PS काढा.
ΔABC मध्ये, AB = `6sqrt3` सेमी, AC = 12 सेमी आणि BC = 6 सेमी तर ∠A चे माप किती?
एका समभुज त्रिकोणाची उंची `sqrt(3)` सेमी आहे, तर त्या त्रिकोणाच्या बाजूची लांबी व परिमिती काढा.
ΔABC हा समभुज त्रिकोण आहे. पाया BC वर P बिंदू असा आहे की PC = `1/ 3` BC, जर AB = 6 सेमी तर AP काढा.
आकृती मध्ये ΔPQR हा समभुज त्रिकोण असून बिंदू S हा रेख QR वर अशा प्रकारे आहे की, QS = `1/3` QR तर सिद्ध करा; 9PS2 = 7PQ2
सोबतच्या आकृतीत, ∆ABC मध्ये, AB ⊥ BC, AB = BC, तर ∠A चे माप किती?
बाजूच्या आकृतीवरून जर AQ = 8 सेमी, तर AB ची लांबी काढा.
सोबतच्या आकृतीवरून, जर AC = 12 सेमी, तर AB ची लांबी काढण्यासाठी खालील कृती पूर्ण करा.
कृती: सोबतच्या आकृतीत, ∆ABC मध्ये, ∠ABC = 90°, ∠ACB = 30° यावरून,
∠BAC = `square`
म्हणजेच, ∆ABC हा 30° – 60° – 90° त्रिकोण आहे.
∆ABC मध्ये 30° – 60° – 90° त्रिकोणाच्या प्रमेयानुसार,
AB = `1/2"AC"` व `square` = `sqrt3/2"AC"`.
∴ `square` = `1/2 xx 12` व BC = `sqrt3/2 xx 12`
∴ `square` = 6 व BC = `6sqrt3.`
सोबतच्या आकृतीत, ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° AC = 14, तर AB व BC काढण्यासाठी खालील कृती पूर्ण करा.
कृती: ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° यावरून, ∠BCA = `square`
30° – 60° – 90° त्रिकोणाच्या प्रमेयानुसार,
`square = 1/2 "AC" व square = sqrt3/2 "AC"`.
∴ BC = `1/2 xx square` व AB = `sqrt3/2 xx 14`
BC = 7 व AB = `7sqrt3`.
∆RST मध्ये, ∠S = 90°, ∠T = 30°, RT = 12 सेमी, तर RS काढा.