Advertisements
Advertisements
Question
Tharunya was thrilled to know that the football tournament is fixed with a monthly timeframe from 20th July to 20th August 2023 and for the first time in the FIFA Women’s World Cup’s history, two nations host in 10 venues. Her father felt that the game can be better understood if the position of players is represented as points on a coordinate plane. |
- At an instance, the midfielders and forward formed a parallelogram. Find the position of the central midfielder (D) if the position of other players who formed the parallelogram are :- A(1, 2), B(4, 3) and C(6, 6)
- Check if the Goal keeper G(–3, 5), Sweeper H(3, 1) and Wing-back K(0, 3) fall on a same straight line.
[or]
Check if the Full-back J(5, –3) and centre-back I(–4, 6) are equidistant from forward C(0, 1) and if C is the mid-point of IJ. - If Defensive midfielder A(1, 4), Attacking midfielder B(2, –3) and Striker E(a, b) lie on the same straight line and B is equidistant from A and E, find the position of E.
Solution
i. Let D be (a, b), then
Mid point of AC = Midpoint of BD
`((1 + 6)/2, (2 + 6)/2) = ((4 + a)/2, (3 + b)/2)`
4 + a = 7
a = 3
3 + b = 8
b = 5
Central midfielder is at (3, 5)
ii. GH = `sqrt((-3 - 3)^2 + (5 - 1)^2`
= `sqrt(36 + 16)`
= `sqrt(52)`
= `2sqrt(13)`
GK = `sqrt((0 + 3)^2 + (3 - 5)^2`
= `sqrt(9 + 4)`
= `sqrt(13)`
HK = `sqrt((3 - 0)^2 + (1 - 3)^2`
= `sqrt(9 + 4)`
= `sqrt(13)`
GK + HK = GH `\implies` G,H and K lie on a same straight line
[or]
CJ = `sqrt((0 - 5)^2 + (1 + 3)^2`
= `sqrt(25 + 16)`
= `sqrt(41)`
CI = `sqrt((0 + 4)^2 + (1 - 6)^2`
= `sqrt(16 + 25)`
= `sqrt(41)`
Full-back J(5, –3) and centre-back I(–4, 6) are equidistant from forward C(0, 1)
Mid-point of IJ = `((5 - 4)/2, (-3 + 6)/2) = (1/2, 3/2)`
C is NOT the mid-point of IJ
iii. A, B and E lie on the same straight line and B is equidistant from A and E
⇒ B is the mid-point of AE
`((1 + a)/2, (4 + b)/2)` = (2, – 3)
1 + a = 4 ; a = 3.
4 + b = -6; b = –10 E is (3, –10)
APPEARS IN
RELATED QUESTIONS
Show that the points (1, – 1), (5, 2) and (9, 5) are collinear.
Find the distance between the following pair of point.
P(–5, 7), Q(–1, 3)
The distances of point P (x, y) from the points A (1, - 3) and B (- 2, 2) are in the ratio 2: 3.
Show that: 5x2 + 5y2 - 34x + 70y + 58 = 0.
KM is a straight line of 13 units If K has the coordinate (2, 5) and M has the coordinates (x, – 7) find the possible value of x.
If the point (x, y) is at equidistant from the point (a + b, b – a) and (a-b, a + b). Prove that ay = bx.
Find distance CD where C(– 3a, a), D(a, – 2a)
The distance between the points A(0, 6) and B(0, -2) is ______.
If the distance between the points (x, -1) and (3, 2) is 5, then the value of x is ______.
In a GPS, The lines that run east-west are known as lines of latitude, and the lines running north-south are known as lines of longitude. The latitude and the longitude of a place are its coordinates and the distance formula is used to find the distance between two places. The distance between two parallel lines is approximately 150 km. A family from Uttar Pradesh planned a round trip from Lucknow (L) to Puri (P) via Bhuj (B) and Nashik (N) as shown in the given figure below. |
Based on the above information answer the following questions using the coordinate geometry.
- Find the distance between Lucknow (L) to Bhuj (B).
- If Kota (K), internally divide the line segment joining Lucknow (L) to Bhuj (B) into 3 : 2 then find the coordinate of Kota (K).
- Name the type of triangle formed by the places Lucknow (L), Nashik (N) and Puri (P)
[OR]
Find a place (point) on the longitude (y-axis) which is equidistant from the points Lucknow (L) and Puri (P).
Find the distance between the points O(0, 0) and P(3, 4).