Advertisements
Advertisements
Question
The base of an isosceles right triangle is 30 cm. Its area is
Options
225 cm2
225 \[\sqrt{3}\] cm2
225 \[\sqrt{2}\] cm2
450 cm2
Solution
\[\text{Let ABC be the right triangle in which} \angle B = 90° . \]
\[\text{ Now, base = BC; perpendicular = AB; Hypotenuse = AC } \]
\[\text{ Now, BC = 30 cm } \left( \text{ given } \right)\]
\[\text{ Now, ∆ ABC is an isosceles right angled ∆ and we know that hypotenuse is the longest side of the right ∆ }m. \]
\[\text{ So, AB = BC = 30 cm } \]
\[\text{ area of ∆ ABC } = \frac{1}{2} \times\text{ base } \times \text{ height } \]
\[ = \frac{1}{2} \times BC \times AB\]
\[ = \frac{1}{2} \times 30 \times 30\]
\[ = 450 {cm}^2\]
APPEARS IN
RELATED QUESTIONS
A triangle and a parallelogram have the same base and the same area. If the sides of triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.
The sides of a quadrilateral, taken in order are 5, 12, 14 and 15 meters respectively, and the angle contained by the first two sides is a right angle. Find its are
Find the area of a rhombus whose perimeter is 80 m and one of whose diagonal is 24 m.
Find the area of an equilateral triangle having each side 4 cm.
The perimeter of a triangullar field is 144 m and the ratio of the sides is 3 : 4 : 5. Find the area of the field.
Find the area of an equilateral triangle having altitude h cm.
A park is in the shape of a quadrilateral. The sides of the park are 15 m, 20 m, 26 m and 17 m and the angle between the first two sides is a right angle. Find the area of the park
The sides of a triangle are 56 cm, 60 cm and 52 cm long. Then the area of the triangle is ______.
The length of each side of an equilateral triangle having an area of `9sqrt(3)`cm2 is ______.