English

A triangle and a parallelogram have the same base and the same area. If the sides of triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram. - Mathematics

Advertisements
Advertisements

Question

A triangle and a parallelogram have the same base and the same area. If the sides of triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.

Solution

For triangle

Perimeter of triangle = (26 + 28 + 30) cm = 84 cm

2s = 84 cm

s = 42 cm

By Heron’s formula,

`"Area of triangle "=sqrt(s(s-a)(s-b)(s-c))`

`"Area of triangle "=[sqrt(42(42-26)(42-28)(42-30))]cm^2`

                          `=[sqrt(42(16)(14)(12))]cm^2`

                           = 336 cm2

Let the height of the parallelogram be h.

Area of parallelogram = Area of triangle

h × 28 cm = 336 cm2

h = 12 cm

Therefore, the height of the parallelogram is 12 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Heron's Formula - Exercise 12.2 [Page 206]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 12 Heron's Formula
Exercise 12.2 | Q 4 | Page 206

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×