Advertisements
Advertisements
Question
The median class for the given distribution is:
Class Interval | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 |
Cumulative Frequency | 2 | 6 | 11 | 18 |
Options
1 – 5
6 – 10
11 – 15
11 – 20
Solution
11 – 15
Explanation:
n = 18
`n/2 = 18/2 = 9`
9 lies between 6 to 11.
so, median class is 11 -15.
APPEARS IN
RELATED QUESTIONS
Find the mean of the natural numbers from 3 to 12.
If each number given in (a) is diminished by 2, find the new value of mean.
The following table given the weekly of workers in a factory:
Weekly wages (in Rs) | No.of workers |
50-55 | 5 |
55-60 | 20 |
60-65 | 10 |
65-70 | 10 |
70-75 | 9 |
75-80 | 6 |
80-85 | 12 |
85-90 | 8 |
Calcculate: (1)the mean, (2) the model class, (3) th number of workers getting weekly qages below Rs. 80 and (4) the number of workers getting Rs. 65 or more but less than Rs.85 as weekly wages.
Draw a histogram and hence estimate the mode for the following frequency distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Freq | 2 | 8 | 10 | 5 | 4 | 3 |
The data on the number of patients attending a hospital in a month are given below. Find the average (mean) number of patients attending the hospital in a month by using the shortcut method. Take the assumed mean as 45. Give your answer correct to 2 decimal places.
Number of patients | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 |
Number of Days | 5 | 2 | 7 | 9 | 2 | 5 |
Estimate the median, the lower quartile and the upper quartile of the following frequency distribution by drawing an ogive:
Age( in yrs) | Under 10 | Under 20 | Under 30 | Under 40 | Under 50 | Under 60 |
No. of males | 6 | 10 | 25 | 32 | 43 | 50 |
Estimate the median, the lower quartile and the upper quartile of the following frequency distribution by drawing an ogive:
Class Interval | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
Frequency | 4 | 12 | 21 | 18 | 15 | 7 | 3 |
Find the mean of: 2.1, 4.5, 5.2, 7.1 and 9.3
Find the mean of: first five odd natural numbers
Find the median of the following sets of numbers.
25, 11, 15, 10, 17, 6, 5, 12.