Advertisements
Advertisements
Question
The objective of an assignment problem is to assign ______.
Options
Number of jobs to equal number of persons at maximum cost.
Number of jobs to equal number of persons at minimum cost.
Only the maximize cost.
Only to minimize cost.
Solution
The objective of an assignment problem is to assign number of jobs to equal number of persons at minimum cost.
Explanation:
- The goal of the assignment problem, which is a type of optimization problem, is to find the best way to give tasks (jobs) to different people.
- The goal is generally to cut costs as much as possible or to be as efficient and productive as possible while making sure that each task is given to the right person and that person does it. A lot of people use the Hungarian way to quickly solve their homework problems.
RELATED QUESTIONS
A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job is given in the following table:
Jobs
|
Machines |
|||
P |
Q |
R |
S |
|
Processing Cost (Rs.)
|
||||
A |
31 |
25 |
33 |
29 |
B |
25 |
24 |
23 |
21 |
C |
19 |
21 |
23 |
24 |
D |
38 |
36 |
34 |
40 |
How should the jobs be assigned to the four machines so that the total processing cost is minimum?
Solve the following minimal assignment problem and hence find the minimum value :
I | II | III | IV | |
A | 2 | 10 | 9 | 7 |
B | 13 | 2 | 12 | 2 |
C | 3 | 4 | 6 | 1 |
D | 4 | 15 | 4 | 9 |
Solve the following minimal assignment problem :
Machines | A | B | C | D | E |
M1 | 27 | 18 | ∞ | 20 | 21 |
M2 | 31 | 24 | 21 | 12 | 17 |
M3 | 20 | 17 | 20 | ∞ | 16 |
M4 | 21 | 28 | 20 | 16 | 27 |
Determine `l_92 and l_93, "given that" l_91 = 97, d_91 = 38 and q_92 = 27/59`
Solve the following maximal assignment problem :
Branch Manager | Monthly Business ( Rs. lakh) | |||
A | B | C | D | |
P | 11 | 11 | 9 | 9 |
Q | 13 | 16 | 11 | 10 |
R | 12 | 17 | 13 | 8 |
S | 16 | 14 | 16 | 12 |
A departmental head has three jobs and four subordinates. The subordinates differ in their capabilities and the jobs differ in their work
contents. With the help of the performance matrix given below, find out which of the four subordinates should be assigned which jobs ?
Subordinates | Jobs | ||
I | II | III | |
A | 7 | 3 | 5 |
B | 2 | 7 | 4 |
C | 6 | 5 | 3 |
D | 3 | 4 | 7 |
Five wagons are available at stations 1, 2, 3, 4, and 5. These are required at 5 stations I, II, III, IV, and V. The mileage between various stations are given in the table below. How should the wagons be transported so as to minimize the mileage covered?
I | II | III | IV | V | |
1 | 10 | 5 | 9 | 18 | 11 |
2 | 13 | 9 | 6 | 12 | 14 |
3 | 3 | 2 | 4 | 4 | 5 |
4 | 18 | 9 | 12 | 17 | 15 |
5 | 11 | 6 | 14 | 19 | 10 |
Five different machines can do any of the five required jobs, with different profits resulting from each assignment as shown below:
Job | Machines (Profit in ₹) | ||||
A | B | C | D | E | |
1 | 30 | 37 | 40 | 28 | 40 |
2 | 40 | 24 | 27 | 21 | 36 |
3 | 40 | 32 | 33 | 30 | 35 |
4 | 25 | 38 | 40 | 36 | 36 |
5 | 29 | 62 | 41 | 34 | 39 |
Find the optimal assignment schedule.
The assignment problem is said to be unbalance if ______
The assignment problem is said to be balanced if ______.
Choose the correct alternative :
The assignment problem is said to be balanced if it is a ______.
Choose the correct alternative :
In an assignment problem if number of rows is greater than number of columns then
Fill in the blank :
When an assignment problem has more than one solution, then it is _______ optimal solution.
In an assignment problem, if number of column is greater than number of rows, then a dummy column is added.
State whether the following is True or False :
In assignment problem, each facility is capable of performing each task.
State whether the following is True or False :
It is not necessary to express an assignment problem into n x n matrix.
Solve the following problem :
A plant manager has four subordinates, and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. This estimate of the time each man would take to perform each task is given in the effectiveness matrix below.
I | II | III | IV | |
A | 7 | 25 | 26 | 10 |
B | 12 | 27 | 3 | 25 |
C | 37 | 18 | 17 | 14 |
D | 18 | 25 | 23 | 9 |
How should the tasks be allocated, one to a man, as to minimize the total man hours?
Solve the following problem :
A dairy plant has five milk tankers, I, II, III, IV and V. These milk tankers are to be used on five delivery routes A, B, C, D and E. The distances (in kms) between the dairy plant and the delivery routes are given in the following distance matrix.
I | II | III | IV | V | |
A | 150 | 120 | 175 | 180 | 200 |
B | 125 | 110 | 120 | 150 | 165 |
C | 130 | 100 | 145 | 160 | 175 |
D | 40 | 40 | 70 | 70 | 100 |
E | 45 | 25 | 60 | 70 | 95 |
How should the milk tankers be assigned to the chilling center so as to minimize the distance travelled?
Choose the correct alternative:
The assignment problem is generally defined as a problem of ______
Choose the correct alternative:
Assignment Problem is special case of ______
Choose the correct alternative:
When an assignment problem has more than one solution, then it is ______
If the given matrix is ______ matrix, the assignment problem is called balanced problem
In an assignment problem if number of rows is greater than number of columns, then dummy ______ is added
State whether the following statement is True or False:
In assignment problem, if number of columns is greater than number of rows, then a dummy row is added
State whether the following statement is True or False:
In assignment problem each worker or machine is assigned only one job
What is the Assignment problem?
Give mathematical form of Assignment problem
What is the difference between Assignment Problem and Transportation Problem?
Three jobs A, B and C one to be assigned to three machines U, V and W. The processing cost for each job machine combination is shown in the matrix given below. Determine the allocation that minimizes the overall processing cost.
Machine | ||||
U | V | W | ||
Jobs | A | 17 | 25 | 31 |
B | 10 | 25 | 16 | |
C | 12 | 14 | 11 |
(cost is in ₹ per unit)
A computer centre has got three expert programmers. The centre needs three application programmes to be developed. The head of the computer centre, after studying carefully the programmes to be developed, estimates the computer time in minitues required by the experts to the application programme as follows.
Programmers | ||||
P | Q | R | ||
Programmers | 1 | 120 | 100 | 80 |
2 | 80 | 90 | 110 | |
3 | 110 | 140 | 120 |
Assign the programmers to the programme in such a way that the total computer time is least.
A departmental head has four subordinates and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. His estimates of the time each man would take to perform each task is given below:
Tasks | |||||
1 | 2 | 3 | 4 | ||
Subordinates | P | 8 | 26 | 17 | 11 |
Q | 13 | 28 | 4 | 26 | |
R | 38 | 19 | 18 | 15 | |
S | 9 | 26 | 24 | 10 |
How should the tasks be allocated to subordinates so as to minimize the total manhours?
Assign four trucks 1, 2, 3 and 4 to vacant spaces A, B, C, D, E and F so that distance travelled is minimized. The matrix below shows the distance.
1 | 2 | 3 | 4 | |
A | 4 | 7 | 3 | 7 |
B | 8 | 2 | 5 | 5 |
C | 4 | 9 | 6 | 9 |
D | 7 | 5 | 4 | 8 |
E | 6 | 3 | 5 | 4 |
F | 6 | 8 | 7 | 3 |
Choose the correct alternative:
Number of basic allocation in any row or column in an assignment problem can be
Choose the correct alternative:
North – West Corner refers to ______
Choose the correct alternative:
If number of sources is not equal to number of destinations, the assignment problem is called ______
Choose the correct alternative:
The purpose of a dummy row or column in an assignment problem is to
Choose the correct alternative:
In an assignment problem involving four workers and three jobs, total number of assignments possible are
A car hire company has one car at each of five depots a, b, c, d and e. A customer in each of the fine towers A, B, C, D and E requires a car. The distance (in miles) between the depots (origins) and the towers(destinations) where the customers are given in the following distance matrix.
a | b | c | d | e | |
A | 160 | 130 | 175 | 190 | 200 |
B | 135 | 120 | 130 | 160 | 175 |
C | 140 | 110 | 155 | 170 | 185 |
D | 50 | 50 | 80 | 80 | 110 |
E | 55 | 35 | 70 | 80 | 105 |
How should the cars be assigned to the customers so as to minimize the distance travelled?
A job production unit has four jobs P, Q, R, and S which can be manufactured on each of the four machines I, II, III, and IV. The processing cost of each job for each machine is given in the following table:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 31 | 25 | 33 | 29 |
Q | 25 | 24 | 23 | 21 |
R | 19 | 21 | 23 | 24 |
S | 38 | 36 | 34 | 40 |
Find the optimal assignment to minimize the total processing cost.
Five wagons are available at stations 1, 2, 3, 4 and 5. These are required at 5 stations I, II, III, IV and V. The mileage between various stations are given in the table below. How should the wagons be transported so as to minimize the mileage covered?
I | II | III | IV | V | |
1 | 10 | 5 | 9 | 18 | 11 |
2 | 13 | 9 | 6 | 12 | 14 |
3 | 7 | 2 | 4 | 4 | 5 |
4 | 18 | 9 | 12 | 17 | 15 |
5 | 11 | 6 | 14 | 19 | 10 |
A plant manager has four subordinates and four tasks to perform. The subordinates differ in efficiency and task differ in their intrinsic difficulty. Estimates of the time subordinate would take to perform tasks are given in the following table:
I | II | III | IV | |
A | 3 | 11 | 10 | 8 |
B | 13 | 2 | 12 | 2 |
C | 3 | 4 | 6 | 1 |
D | 4 | 15 | 4 | 9 |
Complete the following activity to allocate tasks to subordinates to minimize total time.
Solution:
Step I: Subtract the smallest element of each row from every element of that row:
I | II | III | IV | |
A | 0 | 8 | 7 | 5 |
B | 11 | 0 | 10 | 0 |
C | 2 | 3 | 5 | 0 |
D | 0 | 11 | 0 | 5 |
Step II: Since all column minimums are zero, no need to subtract anything from columns.
Step III: Draw the minimum number of lines to cover all zeros.
I | II | III | IV | |
A | 0 | 8 | 7 | 5 |
B | 11 | 0 | 10 | 0 |
C | 2 | 3 | 5 | 0 |
D | 0 | 11 | 0 | 5 |
Since minimum number of lines = order of matrix, optimal solution has been reached
Optimal assignment is A →`square` B →`square`
C →IV D →`square`
Total minimum time = `square` hours.