Advertisements
Advertisements
Question
Solve the following minimal assignment problem :
Machines | A | B | C | D | E |
M1 | 27 | 18 | ∞ | 20 | 21 |
M2 | 31 | 24 | 21 | 12 | 17 |
M3 | 20 | 17 | 20 | ∞ | 16 |
M4 | 21 | 28 | 20 | 16 | 27 |
Solution
Machines | A | B | C | D | E |
M1 | 27 | 18 | __ | 20 | 21 |
M2 | 31 | 24 | 21 | 12 | 17 |
M3 | 20 | 17 | 20 | __ | 16 |
M4 | 21 | 28 | 20 | 16 | 27 |
Step 1 : We introduce a dummy machine M2 with time zero for each job and replace '-' by ∞
A | B | C | D | E | |
M1 | 27 | 18 | ∞ | 20 | 21 |
M2 | 31 | 24 | 21 | 12 | 17 |
M3 | 20 | 17 | 20 | ∞ | 16 |
M4 | 21 | 28 | 20 | 16 | 27 |
M5 | 0 | 0 | 0 | 0 | 0 |
Step 2: Subtracting minimum element of each row from all its elememts
As minimum number of lines = 4 ≠ order of the matrix.
. . Optimal solution is not reached.
Step 3 : We subtract minimum element (from uncovered elements) from each uncovered element and add to intersection elements.
Minimum number of lines= 5
= order of matrix.
:. Optimum solution is reached.
Step 4 : Making assignment at single zero of the row and of the column.
. . The optimal assignment of jobs to machines is
M1 → B M2 → D M3 → E M4 → C M5 → A
APPEARS IN
RELATED QUESTIONS
A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job is given in the following table:
Jobs
|
Machines |
|||
P |
Q |
R |
S |
|
Processing Cost (Rs.)
|
||||
A |
31 |
25 |
33 |
29 |
B |
25 |
24 |
23 |
21 |
C |
19 |
21 |
23 |
24 |
D |
38 |
36 |
34 |
40 |
How should the jobs be assigned to the four machines so that the total processing cost is minimum?
Solve the following minimal assignment problem and hence find the minimum value :
I | II | III | IV | |
A | 2 | 10 | 9 | 7 |
B | 13 | 2 | 12 | 2 |
C | 3 | 4 | 6 | 1 |
D | 4 | 15 | 4 | 9 |
Suggest optimum solution to the following assignment. Problem, also find the total minimum service time.
Service Time ( in hrs.)
Counters | Salesmen | |||
A | B | C | D | |
W | 41 | 72 | 39 | 52 |
X | 22 | 29 | 49 | 65 |
Y | 27 | 39 | 60 | 51 |
Z | 45 | 50 | 48 | 52 |
Solve the following minimal assignment problem and hence find minimum time where '- ' indicates that job cannot be assigned to the machine :
Machines | Processing time in hours | ||||
A | B | C | D | E | |
M1 | 9 | 11 | 15 | 10 | 11 |
M2 | 12 | 9 | - | 10 | 9 |
M3 | - | 11 | 14 | 11 | 7 |
M4 | 14 | 8 | 12 | 7 | 8 |
Solve the following maximal assignment problem :
Branch Manager | Monthly Business ( Rs. lakh) | |||
A | B | C | D | |
P | 11 | 11 | 9 | 9 |
Q | 13 | 16 | 11 | 10 |
R | 12 | 17 | 13 | 8 |
S | 16 | 14 | 16 | 12 |
In a factory there are six jobs to be performed each of which should go through two machines A and B in the order A - B. The processing timing (in hours) for the jobs arc given here. You are required to determine the sequence for performing the jobs that would minimize the total elapsed time T. What is the value of T? Also find the idle time for machines · A and B.
Jobs | J1 | J2 | J3 | J4 | J5 | J6 |
Machine A | 1 | 3 | 8 | 5 | 6 | 3 |
MAchine B | 5 | 6 | 3 | 2 | 2 | 10 |
A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job for each machine is given in the following table:
Jobs | Machines (Processing Cost in ₹) |
|||
P | Q | R | S | |
A | 31 | 25 | 33 | 29 |
B | 25 | 24 | 23 | 21 |
C | 19 | 21 | 23 | 24 |
D | 38 | 36 | 34 | 40 |
Find the optimal assignment to minimize the total processing cost.
Five wagons are available at stations 1, 2, 3, 4, and 5. These are required at 5 stations I, II, III, IV, and V. The mileage between various stations are given in the table below. How should the wagons be transported so as to minimize the mileage covered?
I | II | III | IV | V | |
1 | 10 | 5 | 9 | 18 | 11 |
2 | 13 | 9 | 6 | 12 | 14 |
3 | 3 | 2 | 4 | 4 | 5 |
4 | 18 | 9 | 12 | 17 | 15 |
5 | 11 | 6 | 14 | 19 | 10 |
Five different machines can do any of the five required jobs, with different profits resulting from each assignment as shown below:
Job | Machines (Profit in ₹) | ||||
A | B | C | D | E | |
1 | 30 | 37 | 40 | 28 | 40 |
2 | 40 | 24 | 27 | 21 | 36 |
3 | 40 | 32 | 33 | 30 | 35 |
4 | 25 | 38 | 40 | 36 | 36 |
5 | 29 | 62 | 41 | 34 | 39 |
Find the optimal assignment schedule.
The assignment problem is said to be balanced if ______.
Choose the correct alternative :
In an assignment problem if number of rows is greater than number of columns then
The objective of an assignment problem is to assign ______.
Fill in the blank :
When an assignment problem has more than one solution, then it is _______ optimal solution.
State whether the following is True or False :
In assignment problem, each facility is capable of performing each task.
Choose the correct alternative:
The assignment problem is generally defined as a problem of ______
Choose the correct alternative:
When an assignment problem has more than one solution, then it is ______
If the given matrix is ______ matrix, the assignment problem is called balanced problem
State whether the following statement is True or False:
In assignment problem, if number of columns is greater than number of rows, then a dummy row is added
State whether the following statement is True or False:
In assignment problem each worker or machine is assigned only one job
What is the Assignment problem?
Give mathematical form of Assignment problem
What is the difference between Assignment Problem and Transportation Problem?
Three jobs A, B and C one to be assigned to three machines U, V and W. The processing cost for each job machine combination is shown in the matrix given below. Determine the allocation that minimizes the overall processing cost.
Machine | ||||
U | V | W | ||
Jobs | A | 17 | 25 | 31 |
B | 10 | 25 | 16 | |
C | 12 | 14 | 11 |
(cost is in ₹ per unit)
A departmental head has four subordinates and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. His estimates of the time each man would take to perform each task is given below:
Tasks | |||||
1 | 2 | 3 | 4 | ||
Subordinates | P | 8 | 26 | 17 | 11 |
Q | 13 | 28 | 4 | 26 | |
R | 38 | 19 | 18 | 15 | |
S | 9 | 26 | 24 | 10 |
How should the tasks be allocated to subordinates so as to minimize the total manhours?
Choose the correct alternative:
Number of basic allocation in any row or column in an assignment problem can be
Choose the correct alternative:
North – West Corner refers to ______
Choose the correct alternative:
The purpose of a dummy row or column in an assignment problem is to
Choose the correct alternative:
The solution for an assignment problem is optimal if
Choose the correct alternative:
In an assignment problem involving four workers and three jobs, total number of assignments possible are
A car hire company has one car at each of five depots a, b, c, d and e. A customer in each of the fine towers A, B, C, D and E requires a car. The distance (in miles) between the depots (origins) and the towers(destinations) where the customers are given in the following distance matrix.
a | b | c | d | e | |
A | 160 | 130 | 175 | 190 | 200 |
B | 135 | 120 | 130 | 160 | 175 |
C | 140 | 110 | 155 | 170 | 185 |
D | 50 | 50 | 80 | 80 | 110 |
E | 55 | 35 | 70 | 80 | 105 |
How should the cars be assigned to the customers so as to minimize the distance travelled?
A department store has four workers to pack goods. The times (in minutes) required for each worker to complete the packings per item sold is given below. How should the manager of the store assign the jobs to the workers, so as to minimize the total time of packing?
Workers | Packing of | |||
Books | Toys | Crockery | Cutlery | |
A | 3 | 11 | 10 | 8 |
B | 13 | 2 | 12 | 12 |
C | 3 | 4 | 6 | 1 |
D | 4 | 15 | 4 | 9 |
A job production unit has four jobs P, Q, R, S which can be manufactured on each of the four machines I, II, III and IV. The processing cost of each job for each machine is given in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 31 | 25 | 33 | 29 |
Q | 25 | 24 | 23 | 21 |
R | 19 | 21 | 23 | 24 |
S | 38 | 36 | 34 | 40 |
Complete the following activity to find the optimal assignment to minimize the total processing cost.
Solution:
Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.
Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.
Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :
Job | Machine | Min.cost |
P | II | `square` |
Q | `square` | 21 |
R | I | `square` |
S | III | 34 |
Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹`square`