Advertisements
Advertisements
Question
A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job is given in the following table:
Jobs
|
Machines |
|||
P |
Q |
R |
S |
|
Processing Cost (Rs.)
|
||||
A |
31 |
25 |
33 |
29 |
B |
25 |
24 |
23 |
21 |
C |
19 |
21 |
23 |
24 |
D |
38 |
36 |
34 |
40 |
How should the jobs be assigned to the four machines so that the total processing cost is minimum?
Solution
We can express the matrix form
`[(31,25,33,29), (25,24,23,21), (19,21,23,24), (38,36,34,40)]`
Subtracting the smallest element in each row from every element of it,
`[(6,0,8,4), (4,3,2,0), (0,2,4,5), (4,2,0,6)]`
Subtracting the smallest element In each column from very element of it.
`[(6,0,8,4), (4,3,2,0), (0,2,4,5), (4,2,0,6)]`
All the zeros of the above matrix are covered with minimum number of lines as below :
No. of lines = No. of rows/columns
Assignment of jobs :
A → Q, B → S, C → P, D → R
Minimum cost = 25 + 21 + 19 + 34
= Rs 99
APPEARS IN
RELATED QUESTIONS
Solve the following minimal assignment problem and hence find the minimum value :
I | II | III | IV | |
A | 2 | 10 | 9 | 7 |
B | 13 | 2 | 12 | 2 |
C | 3 | 4 | 6 | 1 |
D | 4 | 15 | 4 | 9 |
Suggest optimum solution to the following assignment. Problem, also find the total minimum service time.
Service Time ( in hrs.)
Counters | Salesmen | |||
A | B | C | D | |
W | 41 | 72 | 39 | 52 |
X | 22 | 29 | 49 | 65 |
Y | 27 | 39 | 60 | 51 |
Z | 45 | 50 | 48 | 52 |
Solve the following minimal assignment problem :
Machines | A | B | C | D | E |
M1 | 27 | 18 | ∞ | 20 | 21 |
M2 | 31 | 24 | 21 | 12 | 17 |
M3 | 20 | 17 | 20 | ∞ | 16 |
M4 | 21 | 28 | 20 | 16 | 27 |
Solve the following minimal assignment problem and hence find minimum time where '- ' indicates that job cannot be assigned to the machine :
Machines | Processing time in hours | ||||
A | B | C | D | E | |
M1 | 9 | 11 | 15 | 10 | 11 |
M2 | 12 | 9 | - | 10 | 9 |
M3 | - | 11 | 14 | 11 | 7 |
M4 | 14 | 8 | 12 | 7 | 8 |
A departmental head has three jobs and four subordinates. The subordinates differ in their capabilities and the jobs differ in their work
contents. With the help of the performance matrix given below, find out which of the four subordinates should be assigned which jobs ?
Subordinates | Jobs | ||
I | II | III | |
A | 7 | 3 | 5 |
B | 2 | 7 | 4 |
C | 6 | 5 | 3 |
D | 3 | 4 | 7 |
In a factory there are six jobs to be performed each of which should go through two machines A and B in the order A - B. The processing timing (in hours) for the jobs arc given here. You are required to determine the sequence for performing the jobs that would minimize the total elapsed time T. What is the value of T? Also find the idle time for machines · A and B.
Jobs | J1 | J2 | J3 | J4 | J5 | J6 |
Machine A | 1 | 3 | 8 | 5 | 6 | 3 |
MAchine B | 5 | 6 | 3 | 2 | 2 | 10 |
A job production unit has four jobs A, B, C, D which can be manufactured on each of the four machines P, Q, R and S. The processing cost of each job for each machine is given in the following table:
Jobs | Machines (Processing Cost in ₹) |
|||
P | Q | R | S | |
A | 31 | 25 | 33 | 29 |
B | 25 | 24 | 23 | 21 |
C | 19 | 21 | 23 | 24 |
D | 38 | 36 | 34 | 40 |
Find the optimal assignment to minimize the total processing cost.
Choose the correct alternative :
The assignment problem is said to be balanced if it is a ______.
Choose the correct alternative :
In an assignment problem if number of rows is greater than number of columns then
The objective of an assignment problem is to assign ______.
Fill in the blank :
When an assignment problem has more than one solution, then it is _______ optimal solution.
Fill in the blank :
An _______ is a special type of linear programming problem.
In an assignment problem, if number of column is greater than number of rows, then a dummy column is added.
State whether the following is True or False :
In assignment problem, each facility is capable of performing each task.
Solve the following problem :
A plant manager has four subordinates, and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. This estimate of the time each man would take to perform each task is given in the effectiveness matrix below.
I | II | III | IV | |
A | 7 | 25 | 26 | 10 |
B | 12 | 27 | 3 | 25 |
C | 37 | 18 | 17 | 14 |
D | 18 | 25 | 23 | 9 |
How should the tasks be allocated, one to a man, as to minimize the total man hours?
Solve the following problem :
A dairy plant has five milk tankers, I, II, III, IV and V. These milk tankers are to be used on five delivery routes A, B, C, D and E. The distances (in kms) between the dairy plant and the delivery routes are given in the following distance matrix.
I | II | III | IV | V | |
A | 150 | 120 | 175 | 180 | 200 |
B | 125 | 110 | 120 | 150 | 165 |
C | 130 | 100 | 145 | 160 | 175 |
D | 40 | 40 | 70 | 70 | 100 |
E | 45 | 25 | 60 | 70 | 95 |
How should the milk tankers be assigned to the chilling center so as to minimize the distance travelled?
Choose the correct alternative:
The assignment problem is generally defined as a problem of ______
Choose the correct alternative:
Assignment Problem is special case of ______
Choose the correct alternative:
When an assignment problem has more than one solution, then it is ______
Choose the correct alternative:
The assignment problem is said to be balanced if ______
In an assignment problem if number of rows is greater than number of columns, then dummy ______ is added
State whether the following statement is True or False:
The objective of an assignment problem is to assign number of jobs to equal number of persons at maximum cost
Choose the correct alternative:
Number of basic allocation in any row or column in an assignment problem can be
Choose the correct alternative:
The solution for an assignment problem is optimal if
Choose the correct alternative:
In an assignment problem involving four workers and three jobs, total number of assignments possible are
A car hire company has one car at each of five depots a, b, c, d and e. A customer in each of the fine towers A, B, C, D and E requires a car. The distance (in miles) between the depots (origins) and the towers(destinations) where the customers are given in the following distance matrix.
a | b | c | d | e | |
A | 160 | 130 | 175 | 190 | 200 |
B | 135 | 120 | 130 | 160 | 175 |
C | 140 | 110 | 155 | 170 | 185 |
D | 50 | 50 | 80 | 80 | 110 |
E | 55 | 35 | 70 | 80 | 105 |
How should the cars be assigned to the customers so as to minimize the distance travelled?
A natural truck-rental service has a surplus of one truck in each of the cities 1, 2, 3, 4, 5 and 6 and a deficit of one truck in each of the cities 7, 8, 9, 10, 11 and 12. The distance(in kilometers) between the cities with a surplus and the cities with a deficit are displayed below:
To | |||||||
7 | 8 | 9 | 10 | 11 | 12 | ||
From | 1 | 31 | 62 | 29 | 42 | 15 | 41 |
2 | 12 | 19 | 39 | 55 | 71 | 40 | |
3 | 17 | 29 | 50 | 41 | 22 | 22 | |
4 | 35 | 40 | 38 | 42 | 27 | 33 | |
5 | 19 | 30 | 29 | 16 | 20 | 33 | |
6 | 72 | 30 | 30 | 50 | 41 | 20 |
How should the truck be dispersed so as to minimize the total distance travelled?
A dairy plant has five milk tankers, I, II, III, IV and V. Three milk tankers are to be used on five delivery routes A, B, C, D and E. The distances (in kms) between the dairy plant and the delivery routes are given in the following distance matrix.
I | II | III | IV | V | |
A | 150 | 120 | 175 | 180 | 200 |
B | 125 | 110 | 120 | 150 | 165 |
C | 130 | 100 | 145 | 160 | 170 |
D | 40 | 40 | 70 | 70 | 100 |
E | 45 | 25 | 60 | 70 | 95 |
How should the milk tankers be assigned to the chilling center so as to minimize the distance travelled?
Five wagons are available at stations 1, 2, 3, 4 and 5. These are required at 5 stations I, II, III, IV and V. The mileage between various stations are given in the table below. How should the wagons be transported so as to minimize the mileage covered?
I | II | III | IV | V | |
1 | 10 | 5 | 9 | 18 | 11 |
2 | 13 | 9 | 6 | 12 | 14 |
3 | 7 | 2 | 4 | 4 | 5 |
4 | 18 | 9 | 12 | 17 | 15 |
5 | 11 | 6 | 14 | 19 | 10 |
A job production unit has four jobs P, Q, R, S which can be manufactured on each of the four machines I, II, III and IV. The processing cost of each job for each machine is given in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 31 | 25 | 33 | 29 |
Q | 25 | 24 | 23 | 21 |
R | 19 | 21 | 23 | 24 |
S | 38 | 36 | 34 | 40 |
Complete the following activity to find the optimal assignment to minimize the total processing cost.
Solution:
Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.
Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.
Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :
Job | Machine | Min.cost |
P | II | `square` |
Q | `square` | 21 |
R | I | `square` |
S | III | 34 |
Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹`square`