English

The orbit of a planet revolving around a star is _______. - Science and Technology 1

Advertisements
Advertisements

Question

The orbit of a planet revolving around a star is _______.

Options

  • circular

  • linear

  • towards the focal point

  • elliptical

MCQ
Fill in the Blanks

Solution

The orbit of a planet revolving around a star is elliptical.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Gravitation - Choose the correct option.

APPEARS IN

SCERT Maharashtra Science and Technology 1 [English] 10 Standard SSC
Chapter 1 Gravitation
Choose the correct option. | Q 2

RELATED QUESTIONS

Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be 105 ly


A comet orbits the Sun in a highly elliptical orbit. Does the comet have a constant (a) linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.


Let the period of revolution of a planet at a distance R from a star be T. Prove that if it was at a distance of 2R from the star, its period of revolution will be \[\sqrt{8}\] T.


Answer the following question.

State Kepler’s law of equal areas.


The square of its period of revolution around the sun is directly proportional to the _______ of the mean distance of a planet from the sun.


Observe the given figure and answer these following questions.


The orbit of a planet moving around the Sun

  1. What is the conclusion about the orbit of a planet?
  2. What is the relation between velocity of planet and distance from sun?
  3. Explain the relation between areas ASB, CSD and ESF.

The third law of Kepler is also known as the Law of ______.


If the distance between the sun and the earth is made three times, then attraction between the two will ______


To verify Kepler's third law graphically four students plotted graphs. Student A plotted a graph of T (period of revolution of planets) versus r (average distance of planets from the sun) and found the plot is straight line with slope 1.85. Student B plotted a graph of T2 v/s r3 and found the plot is straight line with slope 1.39 and negative Y-intercept. Student C plotted graph of log T v/s log r and found the plot is straight line with slope 1.5. Student D plotted graph of log T v/s log r and found the plot is straight line with slope 0.67 and with negative X-intercept. The correct graph is of student


The centre of mass of an extended body on the surface of the earth and its centre of gravity ______.

  1. are always at the same point for any size of the body.
  2. are always at the same point only for spherical bodies.
  3. can never be at the same point.
  4. is close to each other for objects, say of sizes less than 100 m.
  5. both can change if the object is taken deep inside the earth.

What is the direction of areal velocity of the earth around the sun?


A satellite is in an elliptic orbit around the earth with aphelion of 6R and perihelion of 2 R where R= 6400 km is the radius of the earth. Find eccentricity of the orbit. Find the velocity of the satellite at apogee and perigee. What should be done if this satellite has to be transferred to a circular orbit of radius 6R ?

[G = 6.67 × 10–11 SI units and M = 6 × 1024 kg]


A planet revolving in an elliptical orbit has:

  1. a constant velocity of revolution.
  2. has the least velocity when it is nearest to the sun.
  3. its areal velocity is directly proportional to its velocity.
  4. areal velocity is inversely proportional to its velocity.
  5. to follow a trajectory such that the areal velocity is constant.

Choose the correct answer from the options given below:


lf the angular momentum of a planet of mass m, moving around the Sun in a circular orbit is L, about the center of the Sun, and its areal velocity is ______.


Two planets A and B of equal mass are having their period of revolutions TA and TB such that TA = 2TB. These planets are revolving in the circular orbits of radii rA and rB respectively. Which out of the following would be the correct relationship of their orbits?


Halley's Comet revolves around the sun for a time period of 76 years. The aphelion distance if perihelion is given by 8.9 × 1010 m, will be ______.

(Take, the mass of sun = 2 × 1030 kg and G = 6.67 × 10-11 Nm3/kg2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×