English
Karnataka Board PUCPUC Science 2nd PUC Class 12

The Q value of a nuclear reaction \\ce{A + b → C + d}\ is defined by Q = [ mA+ mb− mC− md]c2 where the masses refer to the respective nuclei. - Physics

Advertisements
Advertisements

Question

The Q value of a nuclear reaction \[\ce{A + b → C + d}\] is defined by

Q = [ mA+ mb− mC− md]cwhere the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

\[\ce{^1_1H + ^3_1H -> ^2_1H + ^2_1H}\]

Atomic masses are given to be

`"m"(""_1^2"H")` = 2.014102 u

`"m"(""_1^3"H")` = 3.016049 u

`"m"(""_6^12"C")` = 12.000000 u

`"m"(""_10^20"Ne")` = 19.992439 u

Numerical

Solution

The given nuclear reaction is:

\[\ce{^1_1H + ^3_1H -> ^2_1H + ^2_1H}\]

It is given that:

Atomic mass `m(""_1^1"H")` = 1.007825 u

Atomic mass `m(""_1^3"H")` = 3.016049 u

Atomic mass `m(""_1^2"H") = 2.014102 u`

According to the question, the Q-value of the reaction can be written as:

Q = `["m"(""_1^1"H") + "m"(""_1^3"H") - 2"m"(""_1^2"H")]"c"^2`

Q = (- 0.00433 c2)u

But 1 u = 931.5 MeV/c2

`= [1.007825  + 3.016049 - 2 xx 2.014102]c^2`

`"Q" = - 0.00433 xx 931.5 = - 4.0334` MeV

The negative Q-value of the reaction shows that the reaction is endothermic.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Nuclei - Exercise [Page 463]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 13 Nuclei
Exercise | Q 13.15 (i) | Page 463
NCERT Physics [English] Class 12
Chapter 13 Nuclei
Exercise | Q 15.1 | Page 463

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The decay constant of radioactive substance is 4.33 x 10-4 per year. Calculate its half life period.

 


State the law of radioactive decay.


Obtain the amount of `""_27^60"Co"` necessary to provide a radioactive source of 8.0 mCi strength. The half-life of `""_27^60"Co"` is 5.3 years.


The Q value of a nuclear reaction A + b → C + d is defined by

Q = [mA+ mb − mC − md]c2 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

\[\ce{^12_6C + ^12_6C ->^20_10Ne + ^4_2He}\]

Atomic masses are given to be

`"m"(""_1^2"H")` = 2.014102 u

`"m"(""_1^3"H")` = 3.016049 u

`"m"(""_6^12C)` = 12.000000 u

`"m"(""_10^20"Ne")` = 19.992439 u


Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:

\[\ce{^223_88Ra -> ^209_82Pb + ^14_6C}\]

\[\ce{^223_88 Ra -> ^219_86 Rn + ^4_2He}\]

Calculate the Q-values for these decays and determine that both are energetically allowed.


Represent Radioactive Decay curve using relation `N = N_o e^(-lambdat)` graphically


Define 'activity' of a radioactive substance ?


Define the activity of a given radioactive substance. Write its S.I. unit.


A radioactive nucleus ‘A’ undergoes a series of decays according to the following scheme:

The mass number and atomic number of A are 180 and 72 respectively. What are these numbers for A4?


In a radioactive decay, neither the atomic number nor the mass number changes. Which of the following particles is emitted in the decay?


A freshly prepared radioactive source of half-life 2 h emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is


The masses of 11C and 11B are respectively 11.0114 u and 11.0093 u. Find the maximum energy a positron can have in the β*-decay of 11C to 11B.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


Identify the nature of the radioactive radiations emitted in each step of the decay process given below.

`""_Z^A X -> _Z^A  _-1^-4 Y ->_Z^A  _-1^-4 W`


Define one Becquerel.


'Half-life' of a radioactive substance accounts for ______.


What percentage of radioactive substance is left after five half-lives?


When a nucleus in an atom undergoes a radioactive decay, the electronic energy levels of the atom ______.


The variation of decay rate of two radioactive samples A and B with time is shown in figure.

Which of the following statements are true?

  1. Decay constant of A is greater than that of B, hence A always decays faster than B.
  2. Decay constant of B is greater than that of A but its decay rate is always smaller than that of A.
  3. Decay constant of A is greater than that of B but it does not always decay faster than B.
  4. Decay constant of B is smaller than that of A but still its decay rate becomes equal to that of A at a later instant.

The activity R of an unknown radioactive nuclide is measured at hourly intervals. The results found are tabulated as follows:

t (h) 0 1 2 3 4
R (MBq) 100 35.36 12.51 4.42 1.56
  1. Plot the graph of R versus t and calculate the half-life from the graph.
  2. Plot the graph of ln `(R/R_0)` versus t and obtain the value of half-life from the graph.

The radioactivity of an old sample of whisky due to tritium (half-life 12.5 years) was found to be only about 4% of that measured in a recently purchased bottle marked 10 years old. The age of a sample is ______ years.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×