English
Karnataka Board PUCPUC Science Class 11

Two Identical Particles, Each with a Charge of 2.0 × 10−4 C and Mass of 10 G, Are Kept at a Separation of 10 Cm and Then Released. What Would Be Speed of Particles When the Separation Becomes Large? - Physics

Advertisements
Advertisements

Question

Two identical particles, each with a charge of 2.0 × 10−4 C and mass of 10 g, are kept at a separation of 10 cm and then released. What would be the speed of the particles when the separation becomes large?

Numerical

Solution

Given:
Magnitude of charges, q  = 2.0 × 10−4 C
Mass of particles, m = 10 g = 0.01 kg
Separation between the charges, r = 10 cm = 0.1 m
Force of repulsion,

Δ P.E = Δ K.E

`("Kq"^2)/"r"`

= `2 xx 1/2 "mv"^2`

v = `sqrt(("Kq"^2)/("rm"))`

= `sqrt((9 xx 10^9 xx 4 xx 10^(-8))/(10 xx 10^(-2) xx 10 xx 10^(-3)))`

= 600 m/s

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Electric Field and Potential - Exercises [Page 124]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 7 Electric Field and Potential
Exercises | Q 68 | Page 124

RELATED QUESTIONS

The electrostatic force on a small sphere of charge 0.4 μC due to another small sphere of charge − 0.8 μC in air is 0.2 N.

  1. What is the distance between the two spheres?
  2. What is the force on the second sphere due to the first?

Three-point charges q, – 4q and 2q are placed at the vertices of an equilateral triangle ABC of side 'l' as shown in the figure. Obtain the expression for the magnitude of the resultant electric force acting on the charge q

(b) Find out the amount of the work done to separate the charges at infinite distance.


At what separation should two equal charges, 1.0 C each, be placed, so that the force between them equals the weight of a 50 kg person? 


Estimate the number of electrons in 100 g of water. How much is the total negative charge on these electrons?


Two insulating small spheres are rubbed against each other and placed 1 cm apart. If they attract each other with a force of 0.1 N, how many electrons were transferred from one sphere to the other during rubbing?


NaCl molecule is bound due to the electric force between the sodium and the chlorine ions when one electron of sodium is transferred to chlorine. Taking the separation between the ions to be 2.75 × 10−8 cm, find the force of attraction between them. State the assumptions (if any) that you have made. 


Three equal charges, 2.0 × 106 C each, are held at the three corners of an equilateral triangle of side 5 cm. Find the Coulomb force experienced by one of the charges due to the other two.  


Ten positively-charged particles are kept fixed on the x-axis at points x = 10 cm, 20 cm, 30 cm, ...., 100 cm. the first particle has a charge 1.0 × 10−8 C, the second 8 × 10−8 C, the third 27 × 10−8 C and so on. The tenth particle has a charge 1000 × 10−8 C.  Find the magnitude of the electric force acting on a 1 C charge placed at the origin. 


Two identical balls, each with a charge of 2.00 × 10−7 C and a mass of 100 g, are suspended from a common point by two insulating strings, each 50 cm long. The balls are held at a separation 5.0 cm apart and then released. Find. 

(a) the electric force on one of the charged balls

(b) the components of the resultant force on it along and perpendicular to the string

(c) the tension in the string

(d) the acceleration of one of the balls. Answers are to be obtained only for the instant just after the release.


Two small spheres, each with a mass of 20 g, are suspended from a common point by two insulating strings of length 40 cm each. The spheres are identically charged and the separation between the balls at equilibrium is found to be 4 cm. Find the charge on each sphere. 


Two identically-charged particles are fastened to the two ends of a spring of spring constant 100 N m−1 and natural length 10 cm. The system rests on a smooth horizontal table. If the charge on each particle is 2.0 × 10−8 C, find the extension in the length of the spring. Assume that the extension is small as compared to the natural length. Justify this assumption after you solve the problem.  


Two particles A and B possessing charges of +2.00 × 10−6 C and of −4.00 × 10−6 C, respectively, are held fixed at a separation of 20.0 cm. Locate the points (s) on the line AB, where (a) the electric field is zero (b) the electric potential is zero.  


A point charge produces an  electric field of magnitude 5.0 NC−1 at a distance of 40 cm from it. What is the magnitude of the charge?


Two charged particles, with equal charges of 2.0 × 10−5 C, are brought from infinity to within a separation of 10 cm. Find the increase in the electric potential energy during the process 


Solve numerical example.

Three equal charges of 10×10-8 C respectively, each located at the corners of a right triangle whose sides are 15 cm, 20 cm, and 25cm respectively. Find the force exerted on the charge located at the 90° angle.


Two point charges +3 µC and +8 µC repel each other with a force of 40 N. If a charge of -5 µC is added to each of them, then force between them will become ______.


Four equal charges q are placed at the four comers A, B, C, D of a square of length a. The magnitude of the force on the charge at B will be ______.


The S.I unit of electric permittivity is


Which of the following statements about nuclear forces is not true?


Four charges equal to −Q are placed at the four a corners of a square and charge q is at its centre. If the system is in equilibrium, the value of q is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×