Advertisements
Advertisements
Question
Two lines l and m intersect at the point O and P is a point on a line n passing through the point O such that P is equidistant from l and m. Prove that n is the bisector of the angle formed by l and m.
Solution
Given: Two lines l and m intersect at the point O and P is a point on a line n passing through O such that P is equidistant from l and m i.e., PQ = PR.
To prove: n is the bisector of the angle formed by l and m i.e., n is the bisector of ∠QOR.
Proof: In ΔOQP and ΔORP,
∠PQO = ∠PRO = 90° ...[Since, P in equidistant from l and m, so PQ and PR should be perpendicular to lines l and m respectively]
OP = OP ...[Common side]
PQ = PR ...[Given]
∴ ΔOQP ≅ ΔORP ...[By RHS congruence rule]
⇒ ∠POQ = ∠POR ...[By CPCT]
Hence, n is the bisector of ∠QOR.
Hence proved.
APPEARS IN
RELATED QUESTIONS
ABC is a right angled triangle in which ∠A = 90° and AB = AC. Find ∠B and ∠C.
AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that
- AD bisects BC
- AD bisects ∠A
BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.
ABC and DBC are two triangles on the same base BC such that A and D lie on the opposite sides of BC, AB = AC and DB = DC. Show that AD is the perpendicular bisector of BC.
ABC is an isosceles triangle in which AC = BC. AD and BE are respectively two altitudes to sides BC and AC. Prove that AE = BD.
Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.
Line segment joining the mid-points M and N of parallel sides AB and DC, respectively of a trapezium ABCD is perpendicular to both the sides AB and DC. Prove that AD = BC.
ABCD is a quadrilateral such that diagonal AC bisects the angles A and C. Prove that AB = AD and CB = CD.
ABCD is quadrilateral such that AB = AD and CB = CD. Prove that AC is the perpendicular bisector of BD.