English

ABCD is quadrilateral such that AB = AD and CB = CD. Prove that AC is the perpendicular bisector of BD. - Mathematics

Advertisements
Advertisements

Question

ABCD is quadrilateral such that AB = AD and CB = CD. Prove that AC is the perpendicular bisector of BD.

Sum

Solution

Given: In quadrilateral ABCD, AB = AD and CB = CD.

Construction: Join AC and BD.

To prove: AC is the perpendicular bisector of BD.

Proof: In ΔABC and ΔADC,

AB = AD   ...[Given]

BC = CD   ...[Given]

And AC = AC   ...[Common side]

∴ ΔABC ≅ ΔADC   ...[By SSS congruence rule]

⇒ ∠1 = ∠2   ...[By CPCT]

Now, in ΔAOB and ΔAOD,

AB = AD   ...[Given]

⇒ ∠1 = ∠2    ...[Proved above]

And AO = AO   ...[Common side]

∴ ΔAOB ≅ ΔAOD   ...[By SAS congruence rule]

⇒ BO = DO   ...[Bt CPCT]

And ∠3 = ∠4   [By CPCT]  ...(i)

But ∠3 + ∠4 = 180°   ...[Linear pair axiom]

∠3 + ∠3 = 180°    ...[From equation (i)]

⇒ 2∠3 = 180° 

⇒ ∠3 = `(180^circ)/2`

∴ ∠3 = 90° 

i.e., AC is perpendicular bisector of BD.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Triangles - Exercise 7.4 [Page 71]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 7 Triangles
Exercise 7.4 | Q 21. | Page 71

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×