Advertisements
Advertisements
Question
उपरोक्त प्रश्न 5 में, यदि दोनों वृत्तों की त्रिज्याएँ बराबर हों, तो सिद्ध कीजिए कि AB = CD है।
Solution
OO' से जुड़ें
चूँकि, OA = O'B ...[दिया गया है।]
साथ ही, ∠OAB = ∠O’BA = 90° ...[वृत्त के किसी भी बिंदु पर स्पर्श रेखा स्पर्श बिंदु पर त्रिज्या के लंबवत होती है।]
चूंकि, दो अलग-अलग बिंदुओं पर दो सीधी रेखाओं के बीच की लंबवत दूरी समान होती है।
⇒ AB, OO' के समांतर है।
इसी प्रकार, CD, OO' के समांतर है।
⇒ AB ॥ CD
साथ ही, ∠OAB = ∠OCD = ∠O’BA = ∠O’DC = 90°
⇒ ABCD एक आयत है।
अत: AB = CD.
APPEARS IN
RELATED QUESTIONS
आकृति में, यदि ∠AOB = 125° है, तो ∠COD बराबर ______ है।
आकृति में, AT केंद्र O वाले वृत्त पर एक स्पर्श रेखा इस प्रकार है कि OT = 4 cm और ∠OTA = 30° है। तब, AT बराबर ______ है।
आकृति में, यदि PQR केंद्र O वाले वृत्त की बिंदु Q पर स्पर्श रेखा है, AB रेखा PR के समांतर एक जीवा है तथा ∠BQR = 70° है, तो ∠AQB बराबर ______ है।
एक वृत्त की जीवा PQ, बिंदु R पर इस वृत्त की स्पर्श रेखा के समांतर है। सिद्ध कीजिए कि बिंदु R चाप PRQ को समद्विभाजित करता है।
यदि केंद्र O वाले वृत्त की AB एक जीवा है, AOC एक व्यास है तथा AT बिंदु A पर खींची गई स्पर्श रेखा है, जैसा कि आकृति में दर्शाया गया है। सिद्ध कीजिए कि ∠BAT = ∠ACB है।
आकृति में, एक वृत्त पर दो स्पर्श रेखाएँ PQ और PR इस प्रकार खींची गई हैं कि ∠RPQ = 30° है। एक जीवा RS स्पर्श रेखा PQ के समांतर खींची जाती है। ∠RQS ज्ञात कीजिए।
[संकेत: Q से होकर जाती हुई QP पर एक लंब रेखा खींचिए।]
केंद्र O वाले किसी वृत्त का AB एक व्यास है और AC एक जीवा इस प्रकार है कि ∠BAC = 30° है। C पर वृत्त की स्पर्श रेखा बढ़ाई गई AB को बिंदु D पर प्रतिच्छेद करती है। सिद्ध कीजिए कि BC = BD है।
आकृति में, केंद्रों O और O' वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि बिंदु O, E, O' संरेखी हैं।
आकृति में, O त्रिज्या 5 cm वाले वृत्त का केंद्र है, T एक बिंदु इस प्रकार है कि OT = 13 cm है तथा OT वृत्त को E पर प्रतिच्छेद करती है। यदि AB, बिंदु E पर वृत्त की एक स्पर्श रेखा है तो AB की लंबाई ज्ञात कीजिए।
यदि त्रिज्या 9 cm वाले एक वृत्त के अंतर्गत एक समद्विबाहु त्रिभुज ABC खींचा गया है, जिसमें AB = AC = 6 cm है, तो उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।