English
Karnataka Board PUCPUC Science Class 11

Visible Light Has Wavelengths in the Range of 400 Nm to 780 Nm. Calculate the Range of Energy of the Photons of Visible Light. - Physics

Advertisements
Advertisements

Question

Visible light has wavelengths in the range of 400 nm to 780 nm. Calculate the range of energy of the photons of visible light.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

Sum

Solution

Given :
Range of wavelengths, `λ_1` = 400 nm to `λ_2` = 780 nm

Planck's constant, `h = 6.63 xx 10^-34  "Js"`

Speed of light, `c = 3 xx 10^8  "m/s"`

Energy of photon,

`E = hv`

`v = c/λ`

`therefore E = hv = (hc)/λ`

Energy `(E_1)` of a photon of wavelength `(λ_1)` : 

`E_1 = (hc)/λ_1`

= `(6.63 xx 10^-34 xx 3 xx 10^8)/(400 xx 10^-9)`

= `(6.63 xx 3)/4 xx 10^-9`

= `4.97725 xx 10^-19`

= `5 xx 10^-19  "J"`

Energy `(E_2)` of a photon of wavelength `(λ_2)` : 

`E_2 = (6.63 xx 3)/7.8 xx 10^-19`

= `2.55 xx 10^-9  "J"`

So, the range of energy is `2.55 xx 10^-19  "J"` to `5 xx 10^-19  "J"` .

shaalaa.com
Photoelectric Effect and Wave Theory of Light
  Is there an error in this question or solution?
Chapter 20: Photoelectric Effect and Wave-Particle Duality - Exercises [Page 365]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 1 | Page 365

RELATED QUESTIONS

The threshold frequency for a certain metal is 3.3 × 1014 Hz. If light of frequency 8.2 × 1014 Hz is incident on the metal, predict the cut-off voltage for the photoelectric emission.


Light of frequency 7.21 × 1014 Hz is incident on a metal surface. Electrons with a maximum speed of 6.0 × 105 m/s are ejected from the surface. What is the threshold frequency for photoemission of electrons?


(a) A monoenergetic electron beam with electron speed of 5.20 × 106 m s−1 is subject to a magnetic field of 1.30 × 10−4 T normal to the beam velocity. What is the a radius of the circle traced by the beam, given e/m for electron equals 1.76 × 1011 C kg−1?

(b) Is the formula you employ in (a) valid for calculating the radius of the path of a 20 MeV electron beam? If not, in what way is it modified?


An electron gun with its collector at a potential of 100 V fires out electrons in a spherical bulb containing hydrogen gas at low pressure (∼10−2 mm of Hg). A magnetic field of 2.83 × 10−4 T curves the path of the electrons in a circular orbit of radius 12.0 cm. (The path can be viewed because the gas ions in the path focus the beam by attracting electrons, and emitting light by electron capture; this method is known as the ‘fine beam tube’ method. Determine e/m from the data.


What is so special about the combination e/m? Why do we not simply talk of e and m separately?


Two neutral particles are kept 1 m apart. Suppose by some mechanism some charge is transferred from one particle to the other and the electric potential energy lost is completely converted into a photon. Calculate the longest and the next smaller wavelength of the photon possible.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A light beam of wavelength 400 nm is incident on a metal plate of work function 2.2 eV. (a) A particular electron absorbs a photon and makes two collisions before coming out of the metal. Assuming that 10% of the extra energy is lost to the metal in each collision, find the kinetic energy of this electron as it comes out of the metal. (b) Under the same assumptions, find the maximum number of collisions the electron can suffer before it becomes unable to come out of the metal.


A horizontal cesium plate (φ = 1.9 eV) is moved vertically downward at a constant speed v in a room full of radiation of wavelength 250 nm and above. What should be the minimum value of v so that the vertically-upward component of velocity is non-positive for each photoelectron?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


In the arrangement shown in the figure, y = 1.0 mm, d = 0.24 mm and D = 1.2 m. The work function of the material of the emitter is 2.2 eV. Find the stopping potential V needed to stop the photocurrent.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A silver ball of radius 4.8 cm is suspended by a thread in a vacuum chamber. Ultraviolet light of wavelength 200 nm is incident on the ball for some time during which light energy of 1.0 × 10−7 J falls on the surface. Assuming that on average, one photon out of every ten thousand is able to eject a photoelectron, find the electric potential at the surface of the ball, assuming zero potential at infinity. What is the potential at the centre of the ball?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Work function of aluminium is 4.2 eV. If two photons each of energy 2.5 eV are incident on its surface, will  the emission of electrons take place? Justify your answer. 


The stopping potential in an experiment on photoelectric effect is 1.5V. What is the maximum kinetic energy of the photoelectrons emitted? Calculate in Joules.


Answer the following question.
Why is the wave theory of electromagnetic radiation not able to explain the photoelectric effect? How does a photon picture resolve this problem?


For a given frequency of light and a positive plate potential in the set up below, If the intensity of light is increased then ______.


When a beam of 10.6 eV photons of intensity 2.0 W/m2 falls on a platinum surface of area 1.0 × 10-4 m2, only 53% of the incident photons eject photoelectrons. The number of photoelectrons emitted per second is ______.


The electromagnetic theory of light failed to explain ______.


Cathode rays can be deflected by


In photoelectric effect, the photoelectric current


An increase in the intensity of the radiation causing photo-electric emission from a surface does not affect the maximum K.E. of the photoelectrons. Explain.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×