Advertisements
Advertisements
Question
Why are low spin tetrahedral complexes not formed?
Solution
For tetrahedral complexes, the crystal field splitting energy is too low. It is lower than pairing energy so, the pairing of electrons is not favoured and therefore the complexes cannot form low spin complexes.
APPEARS IN
RELATED QUESTIONS
Write the electronic configuration of Fe(III) on the basis of crystal field theory when it forms an octahedral complex in the presence of (i) strong field, and (ii) weak field ligand. (Atomic no.of Fe=26)
The colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light in the visible region, for the complexes, \[\ce{[Co(NH3)6]^{3+}}\], \[\ce{[Co(CN)6]^{3-}}\], \[\ce{[Co(H2O)6]^{3+}}\]
An aqueous pink solution of cobalt (II) chloride changes to deep blue on addition of excess of HCl. This is because:
(i) \[\ce{[Co(H2O)6]^{2+}}\] is transformed into \[\ce{[CoCl6]}^{4-}\]
(ii) \[\ce{[Co(H2O)6]^{2+}}\] is transformed into \[\ce{[CoCl4]}^{2-}\]
(iii) tetrahedral complexes have smaller crystal field splitting than octahedral complexes.
(iv) tetrahedral complexes have larger crystal field splitting than octahedral complex.
\[\ce{CuSO4 . 5H2O}\] is blue in colour while \[\ce{CuSO4}\] is colourless. Why?
Match the complex ions given in Column I with the hybridisation and number of unpaired electrons given in Column II and assign the correct code:
Column I (Complex ion) | Column II (Hybridisation, number of unpaired electrons) |
A. \[\ce{[Cr(H2O)6]^{3+}}\] | 1. dsp2, 1 |
B. \[\ce{[Co(CN)4]^{2-}}\] | 2. sp3d2, 5 |
C. \[\ce{[Ni(NH3)6]^{2+}}\] | 3. d2sp3, 3 |
D. \[\ce{[MnF6]^{4-}}\] | 4. sp3, 4 |
5. sp3d2, 2 |
Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following:
\[\ce{[FeF6]^{3-}, [Fe(H2O)6]^{2+}, [Fe(CN)6]^{4-}}\]
In a coordination entity, the electronic configuration of the central metal ion is t2g3 eg1
Draw the crystal field splitting diagram for the above complex.
Using crystal field theory, write the electronic configuration of d5 ion, if Δ0 > P.
For octahedral Mn(II) and tetrahedral Ni(II) complexes, consider the following statements:
(i) Both the complexes can be high spin.
(ii) Ni(II) complex can very rarely below spin.
(iii) With strong field Ligands, Mn(II) complexes can be low spin.
(iv) Aqueous solution of Mn (II) ions is yellow in colour.
The correct statements are:
On the basis of crystal field theory, write the electronic configuration for d4 with a strong field ligand for which Δ0 > P.