Advertisements
Advertisements
Question
y-अक्ष पर उस बिंदु के निर्देशांक ज्ञात कीजिए जिसकी बिंदु P(3, –2, 5) से दूरी `5sqrt2` है।
Solution
y-अक्ष पर किसी बिंदु के निर्देशांक A(0, y1, 0) है। A से P(3, –2, 5) के बीच की दूरी = `5sqrt2`
∴ AP2 = (3 – 0)2 + (−2 – y1) + (5 – 0)2
∴ = 9 + (−2 – y1) + 25
= (y1 + 2)2 + 34
AP = `sqrt(("y"_1 + 2)^2 + 34) = 5sqrt2` ........(दिया है)
∴ (y1 + 2)2 + 34 = 50
∴ (y1 + 2)2 = 50 – 34 = 16
y1 + 2 = ± 4
+ ve चिन्ह लेने पर, y1 = 4 – 2 = 2
– ve चिन्ह लेने पर, y1 = – 4 – 2 = –6
∴ y-अक्ष पर अभीष्ट बिंदु (0, 2, 0) और (0, –6, 0) है।
APPEARS IN
RELATED QUESTIONS
एक त्रिभुज ABC के शीर्षों के निर्देशांक क्रमशः A(0, 0, 6), B(0, 4, 0) तथा C(6, 0, 0) हैं। त्रिभुज की माध्यिकाओं की लंबाई ज्ञात कीजिए।
P(2, –3, 4) और Q(8, 0, 10) को मिलाने वाली रेखाखंड पर स्थित एक बिंदु R का x-निर्देशांक 4 है। बिंदु R के निर्देशांक ज्ञात कीजिए।
(संकेत: मान लीजिए R, PQ को k : 1 में विभाजित करता है। बिंदु R के निर्देशांक `((8"k" + 2)/("k" + 1), (-3)/("k" + 1), (10"k" + 4)/("k" + 1))` हैं।)
यदि बिंदु A और B क्रमशः (3, 4, 5) तथा (−1, 3, –7) हैं। चर बिंदु P द्वारा निर्मित समुच्चय से संबंधित समीकरण ज्ञात कीजिए, जहाँ PA2 + PB2 = k2 जब कि k अचर है।