English

यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15 - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15

Sum

Solution

यह दिया गया है कि a और b, x– 3x + p = 0 की मूल हैं

∴ a + b = 3 और ab = p … (1)

साथ ही, c और d, x2 – 12x + q = 0 के मूल हैं

∴ c + d = 12 और cd = q … (2)

यह दिया गया है कि a, b, c, d  गुणोत्तर श्रेणी में हैं।

मान लीजिए a = x, b = xr, c = xr2, d = xr3

(1) और (2) से, हम प्राप्त करते हैं

x + xr = 3

⇒ x (1 + r) = 3

xr2 + xr3 =12

⇒ xr(1 + r) = 12

विभाजित करने पर हमें प्राप्त होता है

`(x^2 (1 + r))/(x (1 + r)) = (12)/(3)`

= r2 = 4

= r = ±2

जब r = 2, `x = 3/(1 + 2) = 3/2 = 1`

जब r = -2, `x = 3/(1 - 2) = 3/(-1) = -3`

स्थिति I:

जब r = 2 और x = 1

ab = x2 r = 2

cd = x2 r5 = 32

∴ `(q + p)/(q - p) = (32 + 2)/(32 - 2) = 34/30 = 17/15`

यानी, (q + p) : (q - p) = 17 :15

स्थिति II:

जब r = -2, x = -3

ab = x2 r = -18

cd =  x2 r5 = -288

∴ `(q + p)/(q - p) = (-288 - 18)/(-288 + 18) = (-306)/(-270) = 17/15`

यानी, (q + p) : (q - p) = 17 : 15

इस प्रकार, दोनों स्थितियों में, हमें (q + p) : (q − p) = 17 : 15 प्राप्त होता है।

shaalaa.com
गुणोत्तर श्रेणी
  Is there an error in this question or solution?
Chapter 9: अनुक्रम तथा श्रेणी - अध्याय 9 पर विविध प्रश्नावली [Page 214]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 9 अनुक्रम तथा श्रेणी
अध्याय 9 पर विविध प्रश्नावली | Q 18. | Page 214

RELATED QUESTIONS

गुणोत्तर श्रेणी `5/2, 5/4, 5/8, ......` का 20वाँ तथा nवाँ पद ज्ञात कीजिए।


उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।


किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमशः p, q तथा s हैं तो दिखाइए कि q2 = ps.


अनुक्रम का कौन सा पद:

`2, 2sqrt2, 4, ......; 128` है?


अनुक्रम का कौन सा पद:

`sqrt3, 3, 3 sqrt3`, ….; 729 है?


अनुक्रम का कौन सा पद:

`1/3, 1/9, 1/27` ,....., `1/19683` है?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

0.15, 0.015, 0.0015, ….., 20 पदों तक


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

`sqrt7, sqrt21, 3sqrt7, .... n` पदों तक


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)


मान ज्ञात कीजिए `sum_("k" = 1)^11  (2 + 3^"k")`


एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।


अनुक्रम 8, 88, 888, 8888, …. के n पदों का योग ज्ञात कीजिए।


ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।


यदि किसी गुणोत्तर श्रेणी का pवाँ, qवाँ तथा rवाँ पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aq−r br−p cp−q = 1


यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद क्रमशः a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n


दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों के योगफल तथा (n + 1) वें पद से (2n)वें पद तक के पदों के योगफल का अनुपात `1/"r"^"n"` है।


सभी x, y ϵ N के लिए f(x + y) = f(x). f(y) को संतुष्ट करता हुआ f एक ऐसा फलन है कि f(1) = 3 एवं `sum_("x" = 1)^ "n"` f(x) = 120 तो n का मान ज्ञात करो।


किसी गुणोत्तर श्रेणी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेणी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।


यदि `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "dx")/("c" - "dx")` (x ≠ 0) हो, तो दिखाइए कि a, b, c, d गुणोत्तर श्रेणी में है।


किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn


यदि a, b, c समांतर श्रेणी में हैं b, c, d गुणोत्तर श्रेणी में हैं तथा `1/"c", 1/"d", 1/"e"` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेणी में हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×