हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Long Cylindrical Wire Carries a Positive Charge of Linear Density 2 ⋅ 0 × 10 − 8 - Physics

Advertisements
Advertisements

प्रश्न

A long cylindrical wire carries a positive charge of linear density  2.0 × 10-8 C      m -1 An electron revolves around it in a circular path under the influence of the attractive electrostatic force. Find the kinetic energy of the electron. Note that it is independent of the radius.

संक्षेप में उत्तर

उत्तर

Let the linear charge density of the wire be λ.
The electric field due to a charge distributed on a wire at a  perpendicular distance rfrom the wire,

`"E"  = λ/ (2 pi ∈ _0 "r")`

The electrostatic force on the electron will provide the electron the necessary centripetal force required by it to move in a circular orbit. Thus,

`"qE" = ("m""v"^2)/"r"`

⇒ mv2 = qEr  .. (1)

Kinetic energy of the electron,`"K" = 1/2 mv2`

From (1),

`"K" = ("qEr")/2`

`"K" = "qr"/2  λ /(2 pi ∈_0 "r")`    `[∵ "E" = λ/((2 pi ∈_0 "r")) ]`

K =(1.6 ×10-19) × ( 2 × 10-8) × ( 9 × 109)J

K = 2.88 × 10-17 J

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Gauss’s Law - Exercises [पृष्ठ १४२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 8 Gauss’s Law
Exercises | Q 15 | पृष्ठ १४२

संबंधित प्रश्न

(i) If two similar large plates, each of area A having surface charge densities +σ and –σ are separated by a distance d in air, find the expressions for

(a) field at points between the two plates and on outer side of the plates. Specify the direction of the field in each case.

(b) the potential difference between the plates.

(c) the capacitance of the capacitor so formed.

(ii) Two metallic spheres of Radii R and 2R are charged so that both of these have same surface charge density σ. If they are connected to each other with a conducting wire, inn which direction will the charge flow and why?


plot a graph showing the variation of current density (j) versus the electric field (E) for two conductors of different materials. What information from this plot regarding the properties of the conducting material, can be obtained which can be used to select suitable materials for use in making (i) standard resistance and (ii) connecting wires in electric circuits?


In the following figure shows a charge q placed at the centre of a hemisphere. A second charge Q is placed at one of the positions A, B, C and D. In which position(s) of this second charge, the flux of the electric field through the hemisphere remains unchanged?
(a) A
(b) B
(c) C
(d) D


A charge Q is uniformly distributed over a rod of length l. Consider a hypothetical cube of edge l with the centre of the cube at one end of the rod. Find the minimum possible flux of the electric field through the entire surface of the cube.


Show that there can be no net charge in a region in which the electric field is uniform at all points.


A charge Q is placed at the centre of an imaginary hemispherical surface. Using symmetry arguments and Gauss's Law, find the flux of the electric field due to this charge through the surface of the hemisphere in the following figure.


The radius of a gold nucleus (Z = 79) is about 7.0 × 10-10 m. Assume that the positive charge is distributed uniformly throughout the nuclear volume. Find the strength of the electric field at (a) the surface of the nucleus and (b) at the middle point of a radius. Remembering that gold is a conductor, is it justified to assume that the positive charge is uniformly distributed over the entire volume of the nucleus and does not come to the outer surface?


A charged particle with a charge of −2⋅0 × 10−6 C is placed close to a non-conducting plate with a surface charge density of 4.0 × 10-6Cm0-2. Find the force of attraction between the particle and the plate.


Three identical metal plates with large surface areas are kept parallel to each other as shown in the following figure. The leftmost plate is given a charge Q, the rightmost a charge −2Q and the middle one is kept neutral. Find the charge appearing on the outer surface of the rightmost plate.


Some equipotential surface is shown in the figure. What can you say about the magnitude and the direction of the electric field? 


An electric field of magnitude 1000 NC−1 is produced between two parallel plates with a separation of 2.0 cm, as shown in the figure. (a) What is the potential difference between the plates? (b) With what minimum speed should an electron be projected from the lower place in the direction of the field, so that it may reach the upper plate? (c) Suppose the electron is projected from the lower place with the speed calculated in part (b). The direction of projection makes an angle of 60° with the field. Find the maximum height reached by the electron.


Draw equipotential surfaces corresponding to a uniform electric field in the z-directions. 


A simple pendulum consists of a small sphere of mass m suspended by a thread of length l. The sphere carries a positive charge q. The pendulum is placed in a uniform electric field of strength E directed vertically downwards. Find the period of oscillation of the pendulum due to the electrostatic force acting on the sphere, neglecting the effect of the gravitational force.


On rubbing, when one body gets positively charged and other negatively charged, the electrons transferred from positively charged body to negatively charged body are ______.

An electric field can deflect ______.

If a linear isotropic dielectric is placed in an electric field of strength E, then the polarization P is ______.

A charge Q is applied to a conducting sphere of radius R. At the sphere's centre, the electric potential and electric field are respectively


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×