हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Man is Sitting on the Shore of a River. He is in the Line of 1.0 M Long Boat and is 5.5 M Away from the Centre of the Boat. He Wishes to Throw an Apple into the Boat. - Physics

Advertisements
Advertisements

प्रश्न

A man is sitting on the shore of a river. He is in the line of 1.0 m long boat and is 5.5 m away from the centre of the boat. He wishes to throw an apple into the boat. If he can throw the apple only with a speed of 10 m/s, find the minimum and maximum angles of projection for successful shot. Assume that the point of projection and the edge of the boat are in the same horizontal level.

टिप्पणी लिखिए

उत्तर

Given:
Length of the boat = 1.0 m 
Distance between the man and the centre of the boat (R) = 5.5 m
Initial speed (u) of throwing the apple by the man = 10 m/s
Acceleration due to gravity (g) = 10 m/s2
We know that the horizontal range is given by

\[R = \frac{u^2 \sin2\alpha}{g} \]
\[ \Rightarrow 5 = \frac{\left( 10 \right)^2 \sin 2\alpha}{10}\]
\[ \Rightarrow {\text{ sin }}{2} {\alpha}{=}\frac{1}{2}\]
\[ \Rightarrow \alpha = 15^\circ \text{ or } 75^\circ\]

Similarly, for the end point of the boat, i.e., point C, we have:
Horizontal range (R) = 6 m

\[R = \frac{u^2 \sin2\alpha}{g} \]

\[ \Rightarrow 6 = \frac{\left( 10 \right)^2 \sin 2\alpha}{10}\]

\[ \Rightarrow {\text{ sin } }{2} {\alpha}{=}\frac{3}{5}\]

\[ \Rightarrow \alpha = 18^\circ \text{ or }  71^\circ\]

For a successful shot, the angle of projection α with initial speed 10 m/s may vary from 15° to 18° or from 71° to 75°. The minimum angle is 15° and the maximum angle is 75°, but there is an interval of 53° for which the successful shot is not allowed. We can show this by putting the successive value of α from 15° to 75°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Rest and Motion: Kinematics - Exercise [पृष्ठ ५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 3 Rest and Motion: Kinematics
Exercise | Q 45 | पृष्ठ ५३

संबंधित प्रश्न

A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to 49 m/s. How much time does the ball take to return to his hands? If the lift starts moving up with a uniform speed of 5 m/s and the boy again throws the ball up with the maximum speed he can, how long does the ball take to return to his hands?


Two bullets are fired simultaneously, horizontally and with different speeds from the same place. Which bullet will hit he ground first? 


A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find the total distance moved by the train .


A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find the position(s) of the train at half the maximum speed.


A police jeep is chasing a culprit going on a motorbike. The motorbike crosses a turning at a speed of 72 km/h. The jeep follows it at a speed of 90 km/h, crossing the turning ten seconds later than the bike. Assuming that they travel at constant speeds, how far from the turning will the jeep catch up with the bike?

 

A ball is projected vertically upward with a speed of 50 m/s. Find the maximum height. 


A ball is projected vertically upward with a speed of 50 m/s. Find the time to reach the maximum height .


A stone is thrown vertically upward with a speed of 28 m/s. Find the maximum height reached by the stone. 


A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3rd, 4th and 5th ball when the 6th ball is being dropped.


A healthy youngman standing at a distance of 7 m from a 11.8 m high building sees a kid slipping from the top floor. With what speed (assumed uniform) should he run to catch the kid at the arms height (1.8 m)?


An elevator is descending with uniform acceleration. To measure the acceleration, a person in the elevator drops a coin at the moment the elevator starts. The coin is 6 ft above the floor of the elevator at the time it is dropped. The person observes that the coin strikes the floor in 1 second. Calculate from these data the acceleration of the elevator.


A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find the maximum height reached  .


A boy standing on a long railroad car throws a ball straight upwards. The car is moving on the horizontal road with an acceleration of 1 m/s2 and the projection velocity in the vertical direction is 9.8 m/s. How far behind the boy will the ball fall on the car?

 

The benches of a gallery in a cricket stadium are 1 m wide and 1 m high. A batsman strikes the ball at a level one metre above the ground and hits a mammoth sixer. The ball starts at 35 m/s at an angle of 53° with the horizontal. The benches are perpendicular to the plane of motion and the first bench is 110 m from the batsman. On which bench will the ball hit?


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the direction in which the pilot should head the plane to reach the point B.   


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the time taken by the plane to go from A to B.


Two friends A and B are standing a distance x apart in an open field and wind is blowing from A to B. A beat a drum and B hears the sound t1 time after he sees the event. A and B interchange their positions and the experiment is repeated. This time B hears the drum timer after he sees the event. Calculate the velocity of sound in still air v and the velocity of wind u. Neglect the time light takes in travelling between the friends. 

 

A ball is dropped from a building of height 45 m. Simultaneously another ball is thrown up with a speed 40 m/s. Calculate the relative speed of the balls as a function of time.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×