हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A person standing on the top of a cliff 171 ft high has to throw a packet to his friend standing on the ground 228 ft horizontally away. - Physics

Advertisements
Advertisements

प्रश्न

A person standing on the top of a cliff 171 ft high has to throw a packet to his friend standing on the ground 228 ft horizontally away. If he throws the packet directly aiming at the friend with a speed of 15.0 ft/s, how short will the packet fall?

टिप्पणी लिखिए

उत्तर

Given:
Height (h) of the cliff = 171 ft
Horizontal distance from the bottom of the cliff = 228 ft
As per the question, the person throws the packet directly aiming to his friend at the initial speed (u) of 15.0 ft/s.

From the diagram, we can write:

\[\tan \theta = \frac{P}{B} = \frac{171}{228}\]

\[\Rightarrow \theta = \tan^{- 1} \left( \frac{171}{228} \right)\]
∴ θ = 37°
When the person throws the packet from the top of the cliff, it moves in projectile motion.
Let us take the reference axis at point A.
u is below the x-axis.
a = g = 32.2 ft/s2 (Acceleration due to gravity)
Using the second equation of motion, we get:

\[y = u\sin\left( \theta \right)T + \frac{1}{2}g T^2 \]

\[y = 171 ft\]

\[\theta = 37^\circ\]

\[g = 32 ft/ s^2 \]

\[T = \text{ Time of flight } \]

\[171 = 15\sin\left( 37 \right)T + \frac{1}{2} \times 32 \times T^2 \]

\[\text{ On solving this quadratic equation in T, we get } : \]

\[T = 2 . 99 s\]

\[\text{ Range }  = 15\cos\left( 37 \right) \times 2 . 99 = 35 . 81 ft\]

\[\text{ Distance by which the packet will fall short }  = 228 - 35 . 81 = 192 . 19 ft\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Rest and Motion: Kinematics - Exercise [पृष्ठ ५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 3 Rest and Motion: Kinematics
Exercise | Q 37 | पृष्ठ ५२

संबंधित प्रश्न

A boy standing on a stationary lift (open from above) throws a ball upwards with the maximum initial speed he can, equal to 49 m/s. How much time does the ball take to return to his hands? If the lift starts moving up with a uniform speed of 5 m/s and the boy again throws the ball up with the maximum speed he can, how long does the ball take to return to his hands?


The velocity of a particle is towards west at an instant. Its acceleration is not towards west, not towards east, not towards north and towards south. Give an example of this type of motion .


At which point on its path a projectile has the smallest speed?


In a projectile motion the velocity 


Two bullets are fired simultaneously, horizontally and with different speeds from the same place. Which bullet will hit he ground first? 


A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find the total distance moved by the train .


A police jeep is chasing a culprit going on a motorbike. The motorbike crosses a turning at a speed of 72 km/h. The jeep follows it at a speed of 90 km/h, crossing the turning ten seconds later than the bike. Assuming that they travel at constant speeds, how far from the turning will the jeep catch up with the bike?

 

A car travelling at 60 km/h overtakes another car travelling at 42 km/h. Assuming each car to be 5.0 m long, find the time taken during the overtake and the total road distance used for the overtake.


A ball is dropped from a balloon going up at a speed of 7 m/s. If the balloon was at a height 60 m at the time of dropping the ball, how long will the ball take in reaching the ground?

 

A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3rd, 4th and 5th ball when the 6th ball is being dropped.


A healthy youngman standing at a distance of 7 m from a 11.8 m high building sees a kid slipping from the top floor. With what speed (assumed uniform) should he run to catch the kid at the arms height (1.8 m)?


A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find the maximum height reached  .


In the following figure shows a 11.7 ft wide ditch with the approach roads at an angle of 15° with the horizontal. With what minimum speed should a motorbike be moving on the road so that it safely crosses the ditch?

Assume that the length of the bike is 5 ft, and it leaves the road when the front part runs out of the approach road.


A boy standing on a long railroad car throws a ball straight upwards. The car is moving on the horizontal road with an acceleration of 1 m/s2 and the projection velocity in the vertical direction is 9.8 m/s. How far behind the boy will the ball fall on the car?

 

An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the time taken by the plane to go from A to B.


Two friends A and B are standing a distance x apart in an open field and wind is blowing from A to B. A beat a drum and B hears the sound t1 time after he sees the event. A and B interchange their positions and the experiment is repeated. This time B hears the drum timer after he sees the event. Calculate the velocity of sound in still air v and the velocity of wind u. Neglect the time light takes in travelling between the friends. 

 

Six particles situated at the corner of a regular hexagon of side a move at a constant speed v. Each particle maintains a direction towards the particle at the next corner. Calculate the time the particles will take to meet each other.  


A ball is dropped from a building of height 45 m. Simultaneously another ball is thrown up with a speed 40 m/s. Calculate the relative speed of the balls as a function of time.


It is a common observation that rain clouds can be at about a kilometre altitude above the ground.

  1. If a rain drop falls from such a height freely under gravity, what will be its speed? Also calculate in km/h. ( g = 10 m/s2)
  2. A typical rain drop is about 4mm diameter. Momentum is mass x speed in magnitude. Estimate its momentum when it hits ground.
  3. Estimate the time required to flatten the drop.
  4. Rate of change of momentum is force. Estimate how much force such a drop would exert on you.
  5. Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm.

(Assume that umbrella is circular and has a diameter of 1 m and cloth is not pierced through !!)


A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and other after a time interval (less than 2 seconds). The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is +15 m at t = 2 s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×