हिंदी

आकृति में, यदि ∠AOB = 125° है, तो ∠COD बराबर ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आकृति में, यदि ∠AOB = 125° है, तो ∠COD बराबर ______ है।

विकल्प

  • 62.5° 

  • 45° 

  • 35° 

  • 55° 

MCQ
रिक्त स्थान भरें

उत्तर

आकृति में, यदि ∠AOB = 125° है, तो ∠COD बराबर 55° है।  

स्पष्टीकरण: 


ABCD वृत्त के चारों ओर घूमने वाला एक चतुर्भुज है।

हम जानते हैं कि, एक वृत्त के परिगत चतुर्भुज की विपरीत भुजाएँ वृत्त के केंद्र पर संपूरक कोण बनाती हैं।

तो, हमारे पास है।

∠AOB + ∠COD = 180°

125° + ∠COD = 180°

∠COD = 55°

shaalaa.com
वृत्त की स्पर्श रेखा
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: वृत्त - प्रश्नावली 9.1 [पृष्ठ १०४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 9 वृत्त
प्रश्नावली 9.1 | Q 2. | पृष्ठ १०४

संबंधित प्रश्न

किसी 5 cm त्रिज्या वाले वृत्त के एक व्यास AB के एक सिरे A पर स्पर्श रेखा XAY खींची गई है। XY के समांतर तथा A से 8 cm की दूरी पर, जीवा CD की लंबाई ______ है।


आकृति में, यदि PQR केंद्र O वाले वृत्त की बिंदु Q पर स्पर्श रेखा है, AB रेखा PR के समांतर एक जीवा है तथा ∠BQR = 70° है, तो ∠AQB बराबर ______ है।


दो संकेंद्रीय वृत्तों में से बाहरी वृत्त की त्रिज्या 5 cm है तथा इसकी 8 cm लंबी जीवा AC आंतरिक वृत्त की स्पर्श रेखा है। आंतरिक वृत्त की त्रिज्या ज्ञात कीजिए।


एक वृत्त की जीवा PQ, बिंदु R पर इस वृत्त की स्पर्श रेखा के समांतर है। सिद्ध कीजिए कि बिंदु R चाप PRQ को समद्विभाजित करता है। 


सिद्ध कीजिए कि किसी वृत्त का एक व्यास AB उन सभी जीवाओं को समद्विभाजित करता है, जो बिंदु A से खींची गई वृत्त की स्पर्श रेखा के समांतर हैं।


यदि केंद्र O वाले वृत्त की AB एक जीवा है, AOC एक व्यास है तथा AT बिंदु A पर खींची गई स्पर्श रेखा है, जैसा कि आकृति में दर्शाया गया है। सिद्ध कीजिए कि ∠BAT = ∠ACB है।


केंद्रों O और O' वाले तथा क्रमशः त्रिज्याओं 3 cm और 4 cm वाले दो वृत्त परस्पर बिंदुओं P और Q पर इस प्रकार प्रतिच्छेद करते हैं। कि OP और O' P दोनों वृत्तों की स्पर्श रेखाएँ हैं। उभयनिष्ठ जीवा PQ की लंबाई ज्ञात कीजिए।


आकृति में, एक वृत्त पर दो स्पर्श रेखाएँ PQ और PR इस प्रकार खींची गई हैं कि ∠RPQ = 30° है। एक जीवा RS स्पर्श रेखा PQ के समांतर खींची जाती है। ∠RQS ज्ञात कीजिए।

[संकेत: Q से होकर जाती हुई QP पर एक लंब रेखा खींचिए।]


केंद्र O वाले किसी वृत्त का AB एक व्यास है और AC एक जीवा इस प्रकार है कि ∠BAC = 30° है। C पर वृत्त की स्पर्श रेखा बढ़ाई गई AB को बिंदु D पर प्रतिच्छेद करती है। सिद्ध कीजिए कि BC = BD है। 


यदि त्रिज्या 9 cm वाले एक वृत्त के अंतर्गत एक समद्विबाहु त्रिभुज ABC खींचा गया है, जिसमें AB = AC = 6 cm है, तो उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×