हिंदी

केंद्रों O और O' वाले तथा क्रमशः त्रिज्याओं 3 cm और 4 cm वाले दो वृत्त परस्पर बिंदुओं P और Q पर इस प्रकार प्रतिच्छेद करते हैं। कि OP और O' P दोनों - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

केंद्रों O और O' वाले तथा क्रमशः त्रिज्याओं 3 cm और 4 cm वाले दो वृत्त परस्पर बिंदुओं P और Q पर इस प्रकार प्रतिच्छेद करते हैं। कि OP और O' P दोनों वृत्तों की स्पर्श रेखाएँ हैं। उभयनिष्ठ जीवा PQ की लंबाई ज्ञात कीजिए।

योग

उत्तर


प्रश्न के अनुसार,

3 सेमी और 4 सेमी त्रिज्या वाले केंद्र O और O' वाले दो वृत्त क्रमशः दो बिंदुओं P और Q पर इस प्रकार प्रतिच्छेद करते हैं कि OP और O'P दोनों वृत्तों की स्पर्श रेखाएँ हैं और PQ एक उभयनिष्ठ जीवा है।

ज्ञात करना है: उभयनिष्ठ जीवा PQ की लंबाई

∠OPO’ = 90°  ...[वृत्त के किसी बिंदु पर स्पर्श रेखा स्पर्श बिंदु से होकर जाने वाली त्रिज्या पर लम्बवत् होती है।]

तो OPO, P पर एक समकोण त्रिभुज है।

ΔOPO' में पाइथागोरस का प्रयोग करने पर, हमें प्राप्त होता है।

(OO’)2 = (O’P)2 + (OP)2

(OO’)2 = (4)2 + (3)2

(OO’)2 = 25

OO’ = 5 cm

मान लीजिए ON = x सेमी और NO' = 5 – x सेमी

समकोण त्रिभुज में ONP

(ON)2 + (PN)2 = (OP)2

x2 + (PN)2 = (3)2

(PN)2 = 9 – x2   ...[1]

समकोण त्रिभुज O'NP में

(O’N)2 + (PN)2 = (O’P)2

(5 – x)2 + (PN)2 = (4)2

25 – 10x + x2 + (PN)2 = 16

(PN)2 = – x2+ 10x – 9  ...[2]

[1] और [2] से

9 – x2 = – x2 + 10x – 9

10x = 18

x = 1.8

(1) से हमारे पास है।

(PN)2 = 9 – (1.8)2

= 9 – 3.24

= 5.76

PN = 2.4 cm

PQ = 2PN

= 2(2.4)

= 4.8 cm

shaalaa.com
वृत्त की स्पर्श रेखा
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: वृत्त - प्रश्नावली 9.4 [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 9 वृत्त
प्रश्नावली 9.4 | Q 5. | पृष्ठ ११२

संबंधित प्रश्न

आकृति में, यदि ∠AOB = 125° है, तो ∠COD बराबर ______ है।


किसी 5 cm त्रिज्या वाले वृत्त के एक व्यास AB के एक सिरे A पर स्पर्श रेखा XAY खींची गई है। XY के समांतर तथा A से 8 cm की दूरी पर, जीवा CD की लंबाई ______ है।


आकृति में, AT केंद्र O वाले वृत्त पर एक स्पर्श रेखा इस प्रकार है कि OT = 4 cm और ∠OTA = 30° है। तब, AT बराबर ______ है।


आकृति में, यदि PQR केंद्र O वाले वृत्त की बिंदु Q पर स्पर्श रेखा है, AB रेखा PR के समांतर एक जीवा है तथा ∠BQR = 70° है, तो ∠AQB बराबर ______ है।


दो संकेंद्रीय वृत्तों में से बाहरी वृत्त की त्रिज्या 5 cm है तथा इसकी 8 cm लंबी जीवा AC आंतरिक वृत्त की स्पर्श रेखा है। आंतरिक वृत्त की त्रिज्या ज्ञात कीजिए।


उपरोक्त प्रश्न 5 में, यदि दोनों वृत्तों की त्रिज्याएँ बराबर हों, तो सिद्ध कीजिए कि AB = CD है।


यदि केंद्र O वाले वृत्त की AB एक जीवा है, AOC एक व्यास है तथा AT बिंदु A पर खींची गई स्पर्श रेखा है, जैसा कि आकृति में दर्शाया गया है। सिद्ध कीजिए कि ∠BAT = ∠ACB है।


आकृति में, एक वृत्त पर दो स्पर्श रेखाएँ PQ और PR इस प्रकार खींची गई हैं कि ∠RPQ = 30° है। एक जीवा RS स्पर्श रेखा PQ के समांतर खींची जाती है। ∠RQS ज्ञात कीजिए।

[संकेत: Q से होकर जाती हुई QP पर एक लंब रेखा खींचिए।]


केंद्र O वाले किसी वृत्त का AB एक व्यास है और AC एक जीवा इस प्रकार है कि ∠BAC = 30° है। C पर वृत्त की स्पर्श रेखा बढ़ाई गई AB को बिंदु D पर प्रतिच्छेद करती है। सिद्ध कीजिए कि BC = BD है। 


किसी वृत्त की बिंदु C पर खींची गई स्पर्श रेखा और व्यास AB बढ़ाने पर बिंदु P पर प्रतिच्छेद करते हैं। यदि ∠PCA = 110° है, तो ∠CBA ज्ञात कीजिए।  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×