हिंदी

ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D. Prove that ∠CBD + ∠CDB = 12 ∠BAD - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D. Prove that ∠CBD + ∠CDB = `1/2` ∠BAD

योग

उत्तर

In a circle, ABCD is a quadrilateral having center A.

To prove ∠CBD + ∠CDB = `1/2` ∠BAD


Construction: Join AC.

Proof: As we know that angle subtended by an arc at the center is double the angle subtended by it at point on the remaining part of the circle.

So, ∠CAD = 2∠CBD  ...(i)

And ∠BAC = 2∠CDB  ...(ii)

Now, adding equation (i) and (ii), we get

∠CAD + ∠BAC = 2(∠CBD + ∠CDB)

∠BAD = 2(∠CBD + ∠CDB)

Hence, ∠CBD + ∠CDB = `1/2` ∠BAD.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Circles - Exercise 10.3 [पृष्ठ १०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 10 Circles
Exercise 10.3 | Q 6. | पृष्ठ १०३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×